
DDS-Demonstrators
Release TechPush

Jul 16, 2020

Contents

1 Measure & Blog 3
1.1 Deliverables . 3
1.2 Main Table of Content . 4

i

ii

DDS-Demonstrators, Release TechPush

Work just started

• All sources, including for documentation can be found in the official main repository: https://bitbucket.org/
HighTech-nl/dds-demonstrators

• All development is done in Feature forks, using the Forking Workflow

• ONLY the main repository is used to generate the documentation: https://DDS-Demonstrators.readthedocs.
io/

DDS1 (Data Distribution Service) is a real-time, embedded “data-centric” pub-sub communication framework.
Which is becoming popular in the (professional, industrial) IoT-world. It is also very HighTech; one of the reasons
why we (Sogeti HighTech BL) are interested.

Sogeti-HighTech has bundled several innovation-projects into this DDS-Demonstrators program.

Each project will result in a simple Demonstrator, showing the power of DDS; and how to use DDS; including
(demonstration) code, test, and lessons-learned2.

Most software is made in C, C++ or Python and will be run an embedded Linux system. Often we use a Raspberry Pi,
which is affordable; and a good reference for a modern embedded system.

• Python is mainly used as a Proof-of-Concept language; when the execution speed is less relevant than the
development-velocity. Python is also used for scripting (for tests and measurements).

• When speed- or latency-measurements are needed, C/C++ is typically used; possibly after a Python PoC.

• Python is also often used for tool-like demonstrators (such as the XScope)

1 See: https://en.wikipedia.org/wiki/Data_Distribution_Service
2 To share this knowledge many DDS-Demonstrators are treated as open-source. Then it becomes easy to share it with our (over 100) HighTech

Software Developers, other Sogeti-professionals, and to show it to clients.

Contents 1

https://bitbucket.org/HighTech-nl/dds-demonstrators
https://bitbucket.org/HighTech-nl/dds-demonstrators
https://www.atlassian.com/git/tutorials/comparing-workflows/forking-workflow
https://DDS-Demonstrators.readthedocs.io/
https://DDS-Demonstrators.readthedocs.io/
https://en.wikipedia.org/wiki/Data_Distribution_Service

DDS-Demonstrators, Release TechPush

2 Contents

CHAPTER 1

Measure & Blog

The DDS-Demonstrators use the “Measure & Blog” approach: every project and every iteration starts with an (R&D)
question, and ends with a publication on the answer.

Typical, the project included some “measurements”, and the publication is a simple “blog”.

The intermediate results, like code, automatic test- and measure-scripts, and other documentation are also published:
should be stored in this version control system. In such a way that others can repeat the experiment easily and learn
quickly.

Often, each “Measure & Blog” will lead to new questions. They should also be documented and can lead to new
iterations.

More on this, later in a generic blog . . .

1.1 Deliverables

Every iteration3 sprint gives the following deliveries:

1) The production code (read: a DDS-Demonstrator, in functional, partial deliveries).

2) The design, where relevant: Use plantUML diagrams, text, etc.

3) The test- and measurement-code.

4) User manuals (SUM: Software User Manuals) - of the product (how to install, run, use . . .).

5) Project / Sprint documentation (including estimates, comments).

6) The “Blog”: from research question by the measurements/results towards the conclusions/advice; typically
short.

7) All kind of âCœconvenient notesâC; in the Team pages

8) “Free” documentation improvements on existing (used) documentation –without adding cost.

3 The term iteration is used to generalize a (scrum) sprint. The same deliverables are expected at the end of a super-sprint (in safe: “PI”), an
internship, an innovation-assignment and the end of a project.

3

DDS-Demonstrators, Release TechPush

9) All other short, cheap improvements to record knowledge.

1.2 Main Table of Content

1.2.1 DDS, an intro

DDS is a real-time, embedded “data-centric” pub-sub communication framework. It has a long history and is very
well described. Although many documentation shows the area when it is described (a bit old-school). However, it is
very alive!

A big benefits of DDS: It is truly distributed

• It has no central server

• This makes it robust;

• There is no single-point-failure

A drawback of DDS: it has a steep learning curve

• It has many, advances features

• It is simple to use; after one grasp the concepts

• These DDS-Demonstrators will help to understand & use DDS

The “DDS-stack” is independent of the platform (hardware & OS), the used programming language, and the supplier!
Unlike many other protocol, both the “wire-protocol” and the “API” are standardized. This should make it possible to
“plug and play” several implementations - at least on paper. Part of this program is to play and experiment with those
promises; as well as with other features1.

DDS is implemented by several suppliers and comes in multiple packages. There are also some ‘open’ or ‘community’
editions. Given the goal of the DDS-Demonstrators, we will restrict ourselves to open-source implementations.(e.g.
CycloneDDS and eProsima Fast RTPS).

We focus on CycloneDDS, an Eclipse-Foundation project2. And will add eProsima Fast RTPS, as we expect it may be
smaller, more suitable for really small embedded systems. Again, we have to experiment with that3.

More info

• Wikipedia: https://en.wikipedia.org/wiki/Data_Distribution_Service

• OMG (the standards) https://www.omg.org/omg-dds-portal/

• DDS-Foundation: https://www.dds-foundation.org

1.2.2 Installation

Message-passing systems use either distributed or local objects. With distributed objects the sender and receiver may
be on different computers, running different operating systems, using different programming languages, etc. In this
case the bus layer takes care of details about converting data from one system to another, sending and receiving data
across the network, etc. The following types of protocols will be handled

1 We already have some indications this is different in practice. By example: a least one (working) python-binding is only able to talks to nodes
with the same python-binding. More on that later.

2 Which is a quite trivial selection method. We also like it has Dutch roots (like DDS itself).
3 We also like eProsima Fast RTPS as it be used in ROS (Robot Operating System); which we also use.

4 Chapter 1. Measure & Blog

https://github.com/eclipse-cyclonedds/cyclonedds
https://github.com/eProsima/Fast-RTPS
https://projects.eclipse.org/projects/iot.cyclonedds
https://en.wikipedia.org/wiki/Data_Distribution_Service
https://www.omg.org/omg-dds-portal/
https://www.dds-foundation.org

DDS-Demonstrators, Release TechPush

DDS: Data Distribution Service

DDS is a standard, realtime, platform & language agnostic, distributed communication-system; based on
pub-sub. It was developed by/for Thales radar systems; then called “splice”. Later become a standard,
with several vendors, both commercially and opensource. It is widely used: in finance, technical and
scientific environments. It is also very suited for and populair in the IoT world. Also see: https://en.
wikipedia.org/wiki/Data_Distribution_Service

Recently, the Eclipse foundation has approved an proposal to have a (true) open-source implementation, called Cyclone
DDS. It is based on a Community Edition of a commercial vendor.

• All sources are on github.

• There is also a python-binding (also on github).

• Java and other language bindings are probably available, or upcoming.

Cyclone DDS (cdds)

This implementation is used for the IPSC experiments (other are tried, but not (yet) working).

• It does work on my Mac, and the RaspberryPi (Model 2, “stretch” (9.1 Debian)

• All code is natively compiled, both on Mac and RaspberryPi (no cross-compiler needed!)

• Documentation is available, but limited. And often not updated to the Cyclone version.

Note: Don’t mix it up!

CycloneDDS is based on an earlier “community edition” of ADLINK; which has also put other versions on github;
mostly in there “atolab” account. Although related; they are not the same!

• In some cases, there docs (and code) is almost the same. Or point to each other.

• This is confusing; be warned!

• An earlier version of this document even pointed to the wrong repro :-)

• The python-binding python-cdds is even part of the atolab account.

• That account has another python-binding (pydds) too; that is NOT working/compatible

Build & Install

Base (C/C++)

Just clone the sources, run cmake and install; as described on https://github.com/eclipse/cyclonedds

Before one can compile it, one should install cmake (note make!), Marvin and Java-8 (or newer)

On Linux/raspberrypi:

> sudo apt-get install cmake
> sudo apt-get install oracle-java8-jdk
> sudo apt-get install maven

Check if the right java version is used. It should say something like:

1.2. Main Table of Content 5

https://en.wikipedia.org/wiki/Data_Distribution_Service
https://en.wikipedia.org/wiki/Data_Distribution_Service
https://projects.eclipse.org/proposals/eclipse-cyclone-dds
https://projects.eclipse.org/proposals/eclipse-cyclone-dds
https://github.com/eclipse/cyclonedds
https://github.com/atolab/python-cdds
https://github.com/atolab/
https://github.com/eclipse/cyclonedds

DDS-Demonstrators, Release TechPush

> java -version
java version "1.8.0_65"

if not, then set the proper version with:

> sudo update-alternatives --config java

Python bindings

Again, clone, and build; See: https://github.com/atolab/python-cdds

One needs (python3) jsonpickle (note the typo on the page: the C is missing). And cdds (see above):

> sudo apt-get install python3
> sudo pip install jsonpickle

Links

• https://projects.eclipse.org/proposals/eclipse-cyclone-dds

• https://github.com/eclipse/cyclonedds

• https://github.com/atolab/python-cdds

MQTT: Message Queuing Telemetry Transport

MQTT is an ISO standard publish-subscribe-based messaging protocol. MQTT works on top of TCP/IP
and is widely used due to it being lightweight and simple in use. MQTT is especially popular in iot
applications with low bandwidth network connections. Its principle is very simple, there is a central
server called the message broker. A publisher sends a message to the broker on a specific topic. The
broker then sends this message to every device or process that subscribed to this topic.

Install

Broker

There are two parts to installing MQTT, there is the broker and the client. Mosquitto is one such broker developed by
the eclipse foundation and is easily installed under debian linux with:

sudo apt-get install mosquitto

For debugging purposes you might also want to install the cmd line tool:

sudo apt-get install mosquitto-clients

Python

Python uses the paho-mqtt library and can be installed with the following:

6 Chapter 1. Measure & Blog

https://github.com/atolab/python-cdds
https://projects.eclipse.org/proposals/eclipse-cyclone-dds
https://github.com/eclipse/cyclonedds
https://github.com/atolab/python-cdds

DDS-Demonstrators, Release TechPush

pip install paho-mqtt

ZMQ, 0MQ: ZeroMQ

ZeroMQ, ZMQ or 0MQ is a anynchronous messaging library, aimed at use in distributed or concurrent
applications. The main strength of ZeroMQ comes from the capability of sending and receiving messages
in many different ways. For example you can have messages between apllications send based on a pub-
sub system, request-reply or push-pull system. Within these systems it is then possible to create queues,
proxies, pipelines, messages brokers and a whole lot of other components. This makes it possible to create
many different ways of getting a message from sender to receiver depending on the need of the system.

Notes

The original author “Pieter Hintjens” is not a Dutch-man; he was from Zuid-Africa. He is also passed away . . .

Install

Python

Installing ZMQ for python on linux/raspberry pi can be easily done with:

sudo apt-get install libzmq3 libzmq3-dev python3-zmq

Links

• http://zeromq.org

1.2.3 Backlog & requirements

Here you find a backlog of the DDS-Demonstrators; it will be updated/maintained by the Product Owner(s).

Tip: When you –as part of a project– feel the need to add a Demonstrator-idea to the backlog, plz make a proposal in
your Team pages!

When accepted it will be moved to here.

Warning: When using needs, tag it with ‘idea’!

RoundTrip & Flood

RoundTrip and Flood are two basic Hello World style Demonstrators.

A simple message is send around toward several (network) nodes. Typically, each node runs on a dedicated Raspberry-
Pi. As DDS is network-agnostic; multiple nodes can run on the same computer. By example, on a PC/Laptop, which
is great for demonstration and an easy start.

1.2. Main Table of Content 7

http://zeromq.org

DDS-Demonstrators, Release TechPush

A standard setup is shown below, where 4 nodes are used; a trivial variations is to have more or less nodes

One node is called “master”, as it starts the roundtrip; and executes the measurements. The other nodes are called
“hub” and have the same functionality; the “links” are set by configuration.

The difference between ‘RoundTrip’ and ‘Flood’ is how fast and in which order the message are processed.

Demonstrator: RoundTrip RT_001

status: import
tags: RT

links incoming: RT_PY_01c, RT_Cpp_01c, RT_C_01c

In RoundTrip only one message is send around at the same time. The ‘Master’ starts a the sequence by sending
one message (by example: “0”). And the receiving hub forwards it; often trivially changing it (in the example: by
adding “1” to the incoming message).
Only when the ‘master’ receives the message (let’s say “3”), it send a new message. In the example, that would be
“4” (3+1). And the sequence starts again.
After an configured number of roundtrips, the master stops sending/forwarding; and the demo is over.

Demonstrator: Flood F_001

status: import
tags: F

links incoming: F_PY_01c, F_Cpp_01c, F_C_01c

In Flood the ‘hub’ works exactly as in RoundTrip (RT_001): it receives a message and forwards it. Typically, the
message is changed by adding a hub-specific postfix (by example the hub-number)
The ‘master’ differs however: it does NOT wait for an incoming message to send the next message. Instead it
sends all message as fast as possible.
Still, the ‘Master’ has to read the incoming message; but can dispose them; reading should have a higher priority
the sending!

8 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

Hints

Todo

Todo: SetUp the M&B comparison between DDS and other protocols in this environment

Tip: Is this part of “DDS-Demonstrators”, or another HighTech-NL TechPush project?

More links

• About the setup with some raspberry’s see setup

• Some roundtrip/flood see RoundTrip

Variants

Requirement: Python RoundTrip RT_PY_01c

status: import

links outgoing: RT_001

Implemented the RoundTrip (RT_001) Demonstrator in python; using the CycloneDDS stack and the “asis” “ato-
lab” python binding.

Requirement: C++ RoundTrip RT_Cpp_01c

status: import

links outgoing: RT_001

Implemented the RoundTrip (RT_001) Demonstrator in C++; using the CycloneDDS stack.

1.2. Main Table of Content 9

DDS-Demonstrators, Release TechPush

Requirement: C RoundTrip RT_C_01c

status: import

links outgoing: RT_001

Implemented the RoundTrip (RT_001) Demonstrator in plan-old-C; using the CycloneDDS stack.

Requirement: Python Flood F_PY_01c

status: import

links outgoing: F_001

Implemented the Flood (F_001) Demonstrator in python; using the CycloneDDS stack and the “asis” “atolab”
python binding.

Requirement: C++ Flood F_Cpp_01c

status: import

links outgoing: F_001

Implemented the Flood (F_001) Demonstrator in C++; using the CycloneDDS stack.

Requirement: C Flood F_C_01c

status: import

links outgoing: F_001

Implemented the Flood (F_001) Demonstrator in plan-old-C; using the CycloneDDS stack.

10 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

Notes

The “atolab” python-binding do work for the RoundTrip (RT_001) and Flood (F_001) Demonstrators; but there are
some know issues. It looks like this library is kind of PoC:

• Python-objects are (typically) serialised into json and transfers as strings. This works for python-to-python, but
not with other languages. It also not according to the “wire specifications”

• This Python-API does not expose the full (C/Conceptual) API. More advantage DDS-features are impossible.

• The Python interface is not very pythonic

• Note: There is not official pythonic-API.

For the basic-Demonstrator this is not an issue. For the long run, a better, completer and more pythonic-API would be
welcome. Then the new (official) Java- and C++ style interfaces are a better start. Its is future work.

Links

• CycloneDDS sources are on github: https://github.com/eclipse/cyclonedds

• The atolab-python binding https://github.com/atolab/python-cdds>

XScope

The XScope Demonstrator is kind of an “add-On” tool, to debug other Demonstrators. Several variant of the XScope
are foreseen: a basic version, and possible some “subclasses” to tailor for specific Demonstrators.

Possible a generic one will become available once.

Demonstrator: XScope (base) XS_001

status: import
tags: XS

The (base) XScope is like an “oscilloscope”, for DDS-messages. It a passive tool, and only listening to topics. It
will frequently “collect” samples of the (configured, list of) Topics and store/print/show them.
When the value of (a part of) a Topic in numeric, it should be able to draw them on a time-scale. A very-basic
version this draw-feature is allowed to do “off-line”, by example via an Excel (export to csv and draw later in
Excel).
By design, this XScope-tool should extendable. The basic functionality should be in the base-XScope; an optional,
flexible adaptation-layer (towards a future DDS-Demonstrator) can be used later – by example to “find” the above
mentioned numeric value in a Topic
The “List of Topics” to monitor is preferable configurable; both in (eg. an) ini-file and on the commandline (without
referring to a file).

1.2. Main Table of Content 11

https://github.com/eclipse/cyclonedds
https://github.com/atolab/python-cdds

DDS-Demonstrators, Release TechPush

Matrix Board Communication

This DDS-Demonstrator is inspired by the communication of the well know “Matrix Boards” above the (Dutch)
Highways.

Each MatrixBoard shows the maximal allowed speed; during traffic-jams. It needs the input from the next two boards;
whose sensors measure the speed at that location.

The real MatrixBoards have sensors (to measure the number of cars, there speed, etc), an actuators (showing the speed),
and some simple algorithms (like: “the step is speed between 2 boards is small” and “when the speed changes, the
light should blink for some time”). The communication between board is are hard-wired; by using land-lans.

Demonstrator: MatrixBoard MBC_001

status: import
tags: MBC

The MatrixBoard DDS-Demonstrator shows some dynamic aspects of DDS in a similar setup. It uses DDS for all
communication.
It does not implement the real MatrixBoards: it has no sensors, no actuators, nor the exact algorithms. The former
two are (very simple) simulated; and the algorithms are replaces by simple rules (roughly doing the same).
When running a set of MatrixBoards, each MatrixBoard is started with a location (thinks about a “hectometer
sign”).
It should automatically “find” the next two ‘upstream’ MatrixBoards and subscribe to those; only.
Whenever the set of MatrixBoards changes, a MatrixBoard should automatically discover the new setup and act
accordingly (cancel and add subscriptions)

Example

Given a setup like below, where the MatrixBoard at loc=3 does not yet exist; and loc=21 does.

• MatrixBoard at loc=1 should subscribe to loc=2 and loc=5.

• MatrixBoard at loc=8 should subscribe to loc=13 and loc=21.

Now suppose, MatrixBoard loc=3 is added and/or loc=21 is abruptly killed. Then:

• MatrixBoard at loc=1 will use loc=2 and loc=3 (and not listen to loc=5 anymore).

• MatrixBoard at loc=8 will add loc=34 to is subscription-list.

12 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

Household Heating Demonstrator

Warning: On Hold

This Demonstrator is on-hold for now; it has a technical complexity that was initially not foreseen. And was not
part of the project.

As this control-loop has a feedback loop, a simple “event driven” architecture can/will result in (indirect) self-
trigering of all nodes. That is not indented! This is easy to solve using “controll-loop concepts”; but that is not the
goal of this Demonstrator.

Demonstrator: Household Heating HH_001

status: on-hold
tags: HH
style: needs_red

To Be Done

Lists of Requirements

1.2. Main Table of Content 13

DDS-Demonstrators, Release TechPush

Open Requirements

Title ID Status Outgoing Incoming
C Flood F_C_01c import F_001
C++ Flood F_Cpp_01c import F_001
Python Flood F_PY_01c import F_001
C RoundTrip RT_C_01c import RT_001
C++ RoundTrip RT_Cpp_01c import RT_001
Python RoundTrip RT_PY_01c import RT_001

Note: ‘import’ counts as ‘open’

In progress

No needs passed the filters

Title ID Status Outgoing Incoming

New Idea’s

No needs passed the filters

Title ID Status Outgoing Incoming

1.2.4 Demonstrators

Each Demonstrator will be documented in it own directory; by the developer(s). See below for the list of DDS-
Demonstrator (in various stages).

Title ID Status Outgoing Incoming Tags
Flood F_001 import F_PY_01c; F_Cpp_01c; F_C_01c F
Household Heating HH_001 on-hold HH
MatrixBoard MBC_001 import MBC
RoundTrip RT_001 import RT_PY_01c; RT_Cpp_01c; RT_C_01c RT
XScope (base) XS_001 import XS

Note: for developers

Please create your own directory (within your Feature-branch/fork) with a name as set by the product-owner. Both in
the src and docs/doc/Demonstrators directory. Use the doc-directory to document the Demonstrator.

See the Team pages directory for âCœscratchâC documentation on personal/team-level. Also, create a subdir there.

The (toplevel) requirements and backlog of Demonstrator can be found: Backlog & requirements

14 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

PingPong

Description

Ping Pong is a way to test connectivity between two computers or programs. It works by sending a message from one
entity to another. This other entity will reply on the first message and so on. The figure below visualises this concept.
.. uml:

@startuml
ping -right-|> pong : message
pong -left-|> ping : message
@enduml

Implementation

There are different implementations of the PingPong. A short description is made for the execution of a particular
implementation. This description contains information about how the implementation can be compiled and executed.

This list contains the different implementations:

C++ PingPong

authors Sam Laan

date March 2020

Description

This is the documentation for the C++ PingPong solution using the Cyclone DDS library. It is assumed you have
already installed Cyclone DDS. If you haven’t please consult the setup guide of team Hurricane(Setup Guide for
CycloneDDS).

How to run

To run the program navigate to the /src/demonstrators/PingPong/C++ folder. The source code and CMakeLists of the
program are in this folder. Now to build the solution perform the following commands:

mkdir build
cd build
cmake ..
make -j4

An executable called “PingPong” should have appeared in the build folder. It is now possible to run the program using
the following command:

./PingPong

The program will ask if you want to run as ping or as pong. Type 1 and press enter for ping, type 2 and press enter
for pong. In ping mode, the program will subscribe to a topic which is one higher than its id. For example, if you
choose id 1 it subscribes to topic 2. After choosing ping or pong, the program will ask for an id. This is the previously
mentioned one. Pong should always be started first because it waits for a ping to come in. An example scenario of
when the program will start ping-ponging is as follows:

1.2. Main Table of Content 15

DDS-Demonstrators, Release TechPush

• Start pong with id 2

• Start ping with id 1

For more information about the program please refer to the source code. It is heavily commented and should provide
all the information you need.

PingPong

• First start Ping, then Pong; in 2 terminals

• You have about 6 seconds between – the SLEEP is hardcoded

• Stop (both) by killing (^C) them

• Ping and Pong may run on different systems (or on the same).

• Same network segment

or go to RoundTrip folder and look at the readme there for setting up a roundtrip

RoundTrip

Description

To test the different ways of communication, what is called a roundtrip is used. In a round trip, different processes or
systems send messages to one another. There can only be one master, but there can be an infinite amount of hubs. The
master and hubs together form a circle, where one message loops through all the devices.

The round trip is used for measuring the time needed to send and receive a message on a network. The time between
each device can easily be measured.

A roundtrip with one master and three hubs looks like this:

Implementation

There are different implementations of the round trip. A short description is made for the execution of a particular
implementation. This description contains information about how the implementation can be compiled and executed.

16 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

This list contains the different implementations:

Round trip and Flood in C

authors Stefanos Florescu

date March 2020

The Roundtrip demonstrator has two different experiments. The first experiment sets up one main master hub and
three hubs. The master hub sends the value 1 and starts measuring time upon sending the message. This message
travels from hub to hub with each hub adding 1 until it returns to the master. Upon arrival of the modified integer from
the third hub at the master, the clock is stopped and the time it took for the roundtrip is displayed.

Similarly to the simple roundtrip experiment, the flood experiment has the same setup of master and three hubs. The
only difference is that the master now sends a bunch of messages at the same time. The hubs read the messages one
by one, process them (by adding 1) and pass them on. The master will start measuring time from the moment he sends
his first message and up to the moment he receives the last message from the last hub.

More information on these demonstrators can be found in the Backlog.

Building and running the executables

Make sure your local repo is up to date with the HighTech-nl repo and move into the directory /
dds-demonstrators/src/demonstrators/RoundTrip/C:

$ mkdir build
$ cd build
$ cmake ..
$ make

Also, after the build directory has been initialized using the cmake .. command, the two scripts
run_roundtrip.sh and run_flood.sh can be used to compile the executables and run the experiments.
These two scripts are similar with the only differences being that they call different executables. For example the
run_roundtrip.sh includes the following:

#!/bin/bash

cmake --build $PWD/build/
echo "Deleting old log file."
rm $PWD/roundtrip.log

echo "Running Roundtrip Demonstrator...press ^C to exit"
./build/Hub_roundtrip topic_2 topic_3 &
./build/Hub_roundtrip topic_3 topic_4 &
./build/Hub_roundtrip topic_4 topic_1 &
./build/Master_roundtrip topic_1 topic_2 > roundtrip.log

The master will output all his measurements into the .log file in each respective case. Furthermore, the first argument
passed to each Hub/Master executable is the topic name on which that entity will be listening on, while the second
argument is the topic on which that entity will write to. In order to see the output of the experiment simply open the
respective .log file.

Note: The Master/Hub can be executed on different nodes, such as Raspberry Pis and PCs. See Setting up Raspberry
Pi network for details on how to connect to the Raspberry Pis.

1.2. Main Table of Content 17

https://bitbucket.org/HighTech-nl/dds-demonstrators/src/master/

DDS-Demonstrators, Release TechPush

Note: In the case of the flood experiment, the number of samples the Master will send can be defined in the
Master_flood.c file by changing the #define FLOOD_SAMPLES number.

Running the Round trip in a Docker Container

Similarly to what we described above, the Round trip and Flood experiments can be executed from a Docker Container.
First make sure you follow the guide on how to build the Docker Image which can be found in the Docker Guide: How
to create and run a Docker Image under “Building Demo Image”. First create a new container using:

$ docker run -it --network="host" --name <container name> <image name>

You can open another terminal/Powershell and have as many processes on that container as you want using per termi-
nal:

$ docker exec -it <existing container name> bash

Navigate into the Roundtrip/ directory and either experiment using:

$./docker_run_roundtrip.sh
$./docker_run_flood.sh

Warning: Due to the networking issue of the Docker Desktop (see in Docker Guide: How to create and run
a Docker Image under “Running Docker Containers” for more info) on Windows/MacOS we need to change
the DDS networking interface in the docker_cyclonedds_config.xml in /root/. The video in Matrix
Board Communication in C shows how this is done. On a Linux machine this is not required and your container
will communicate over the network.

Round trip in C++

authors Joost Baars

date Mar 2020

Description

The round trip C++ directory can be found in src/demonstrators/RoundTrip/C++/. This directory contains
a folder for the round trip implementation as well as the flood implementation.

This page is split into two major chapters. One for the round trip application and one for the flood application.

Dependencies

The dependencies necessary for succesful compilation of the round trip / flood application in C++ are the following:

• CMake

• C++17 compiler (Gcc 7+ for example)

• CycloneDDS library

18 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

Round trip

This chapter contains the information about the round trip application. This application can be found in the directory:
src/demonstrators/RoundTrip/C++/RoundTrip.

Configuring

First go to the RoundTrip C++ directory (see Round trip).

The C++ round trip implementation contains an implementation for the round trip with the use of callbacks or the use
of of polling and reading. One of these implementations can be chosen before building the project.

The implementation can be configured by altering the following line in the CMakeLists.txt:

set(PROJECT roundtrip_read)

This line can be found at the top of the CMakeLists file. The roundtrip_read can be changed to
roundtrip_callback for the callback implementation.

Building

First go to the round trip C++ directory (see Round trip).

Execute the following commands:

mkdir build && cd build
cmake ..
make

These commands compile the code and create the executable.

Execution

The application must be executed using various parameters. The application can be executed using the following
command:

./RoundTrip <device ID> <number of devices> <total round trips>

The following example starts 4 nodes for the round trip. The slaves of the round trip are started in the background.
Only the master is started in the foreground in this example. Each device pings a total of 1000 times. Therefore, there
are 1000 round trips.

./RoundTrip 2 4 1000 & ./RoundTrip 3 4 1000 & ./RoundTrip 4 4 1000 &

./RoundTrip 1 4 1000

A more thorough description of the parameters can be found when executing the application with no parameters.

Note: Execution of the program

The round trip is initiated by the device with <device ID> = 1. Therefore, <device ID> = 1 should always be started
after the other ID’s are started.

1.2. Main Table of Content 19

DDS-Demonstrators, Release TechPush

The devices added with <device ID> must be an increment of the previous one. This function does not dynamically
search for the next device! So if there are three devices, device 2 and 3 should be started first. Afterwards, device 1
can be started.

The <total round trips> parameter should be the same for each application.

Implementation

Each round trip application creates a participant containing a reader and a writer. The writer writes to the topic of the
ID above it. So applications with ID = 1 writes to the application with ID = 2. The reader reads from its own topic.
These topics have the name “roundtrip” with the ID behind it. So the topic with ID = 1 is “roundtrip1”.

The application with ID = 1 initiates the round trip. Therefore, it starts with writing to topic “roundtrip2”. The
application with ID = 2 then receives the message of the application with ID = 1, and sends a message to the next
application.

Read

The read implementation continuously executes the dds_take() function to get the latest message of its own topic.
dds_take() is used so the message is directly removed from DDS and so it won’t be read again. When a message
is received, the application uses dds_write() for writing to the next application.

Callback

The callback implementation uses a callback function for receiving the latest message and writing to the next applica-
tion. This implementation sleeps until data is received on the readers topic. When data is received, a callback function
is executed where dds_write() writes to the next application in the round trip.

Flood

This chapter contains the information about the flood application. This application can be found in the directory:
src/demonstrators/RoundTrip/C++/Flood

Building

First go to the round trip C++ directory (see Flood).

Execute the following commands:

mkdir build && cd build
cmake ..
make

These commands compile the code and create the executable.

Execution

The application must be executed using various parameters. The application can be executed using the following
command:

20 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

./Flood <device ID> <number of devices> <total messages>

The following example starts 4 nodes for the flood application. The slaves of the flood are started in the background.
Only the master is started in the foreground in this example. There are a total of 1000 messages send by the master.
For a flood to be finished, these messages should all be correctly received by the master.

./Flood 2 4 1000 & ./Flood 3 4 1000 & ./Flood 4 4 1000 &

./Flood 1 4 1000

A more thorough description of the parameters can be found when executing the application with no parameters.

Note: Execution of the program

The flood is initiated by the device with <device ID> = 1. Therefore, <device ID> = 1 should always be started after
the other ID’s are started.

The devices added with <device ID> must be an increment of the previous one. This function does not dynamically
search for the next device! So if there are three devices, device 2 and 3 should be started first. Afterwards, device 1
can be started.

The <total messages> parameter should be the same for each application.

Implementation

Each flood application creates a participant containing a reader and a writer. The writer writes to the topic of the ID
above it. So applications with ID = 1 writes to the application with ID = 2. The reader reads from its own topic. These
topics have the name “flood” with the ID behind it. So the topic with ID = 1 is “flood1”.

The application with ID = 1 initiates the flood. Therefore, it starts with writing to topic “flood2” as fast as possible.
The application with ID = 2 then receives the messages of the application with ID = 1, and sends a message to the next
application for each message received.

The slaves (ID not equal to 1) just send a message to the other device in the flood loop as soon as they receive a
message. The master (ID = 1) sends messages as fast as possible to the next device in the flood loop.

If the master sends a message, a value is incremented. The master keeps sending messages until the value is equal to
the <total messages> parameter that the user inserted when executing the application. If the master receives a
message, a value is incremented. At the end, this value should be the same as the <total messages> parameter
that the user inserted when executing the application.

Slave

The slave implementation continuously executes the dds_take() function to get the latest message of its own topic.
dds_take() is used so the message is directly removed from DDS and so it won’t be read again.

When a message is received, the application uses dds_write() for writing to the next application.

Master

The master implementation continuously executes the dds_take() function to get the latest message of its own
topic. Afterwards, it writes a new message to the next device in the flood loop.

1.2. Main Table of Content 21

DDS-Demonstrators, Release TechPush

Therefore, at the beginning, the master only writes to the next devices. Aftwerwards, the loop will eventually be in a
stable condition where the master reads a message first and writes a new message afterwards. In the end, the master
won’t send messages anymore, and will only read the last messages that exist in the flood loop.

Round trip in Python

Description

The round trip python directory can be found in src/demonstrators/RoundTrip/Python/. This directory
contains the source for the round trip and also the flood implementation.

The DDShub.py needs to be setup with a publishing and subscribing topic, acting as a hub. The RoundTrip.py and
Flood.py act as the master and do not have to be setup. Here the publishing and subscribing topic are hard coded. So
for one hub the subscribing topic and another hub the publishing topic are also fixed, which ‘connect’ to the master.

To setup a round trip of a master and three hubs the following needs to be configured.

./DDShub.py Master_Out <publish name hub1>

./DDShub.py <publish name hub1> <publish name hub2>

./DDShub.py <publish name hub2> Master_in

./RoundTrip.py

An example of this, for the hubs, is present in bash script run_L3.sh. To setup a flood the RoundTrip.py needs to be
replaced with Flood.py.

Execution

Use DDShub.py to setup either a flood or round trip setup (see run_L3.sh for an example). To run the flood example:

./run_L3.sh

./Flood.py <number of messages to send>

for <number of messages to send> a value can be specified. If omitteda, a
→˓value of 1000 will be used.

To run the round trip example:

./run_L3.sh

./RoundTrip.py

The above will only do one run. For more accurate measurements multiple runs have to be made. This can be achieved
by using a loop (script run_RoundTrip_10times.sh). This script also logs each output of a single run into a separate
log file.

#!/bin/bash
i=1
while [$i -le 10]
do

./RoundTrip.py > ~/RoundTrip_python_$i.log
let "i = i + 1"

done

A similar script can also be created for executing flood 10 times, with the number of messages as argument.

22 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

#!/bin/bash
i=1
while [$i -le 10]
do

./Flood.py $1 > ~/Flood_python_$i.log
let "i = i + 1"

done

Measurements

For the measurements a setup has been chosen of four hubs of which one is the master doing all the measurements.

The measurements for the inter process communication (IPC) of the roundtrip and flood experiments have been gath-
ered on a hp laptop, issued by Capgemini, and a Raspberry Pi, issued by the product owner. All the hubs run on the
same hardware, either the laptop or the Raspberry Pi.

The measurements for the inter system communication (ISC) of the round trip and flood expirements have been
gathered on both above mentioned hardware, for the IPC, and additionally an ethernet router. Two hubs run on the
laptop, the master and hub 2, and two hubs run on the Raspberry Pi, hub 1 and hub 3. Since the communication will
start at the master to hub 1, from hub 1 to hub2, from hub 2 to hub 3 and from hub 3 to the master, there is no inter
process communication on either the laptop or the Raspberry Pi. There is only inter system communication.

Specifications of the hardware: HP laptop: HP Elitebook 850GS, Intel i7-8650 CPU @ 1,9 GHz 2,11 GHz Raspberry
Pi: Raspberry Pi 3 Model B v1.2, Broadcomm BCM2837 CPU @ 1,2 GHz Ethernet router: Netgear WGR614 v7

For the round trip several runs have been performed, with the averages as the following result:

Round trip (ms)
run 1 run 2 run 3 run 4 run 5

HP laptop (IPC) 1,357 1,549 1,534 1,689 1,484
Raspberry Pi (IPC) 8,623 8,775 8,705 8,718 8,574
laptop & Pi (ISC) 7,691 7,822 7,825 7,599 8,126

1.2. Main Table of Content 23

DDS-Demonstrators, Release TechPush

For the ISC measurements the expected time for a round trip would be roughly: “(Raspberry Pi(IPC) + HP laptop
(IPC))/2”, which is approximately 5 ms. However, based on the figures above there is a difference of around 2,5 to 3,1
ms. This time difference is consumed by the router, since this hardware has been added to the configuration.

For the flood also several runs have been performed, with the averages of all runs per different number of messages
as the following result: (The time measured is the time it takes from sending the first message and receiving the last
message)

Flood (s), x 1000 messages
1 10 100 1000

HP laptop (IPC) 0,6 4,6 56,1 578,5
Raspberry Pi (IPC) 3,2 31,6 321,5 3480,1
laptop & Pi (ISC) 2,7 24,7 235,5 2291,7

From the flood measurements a linear pattern can be deducted for both hardware (IPC), although this was not expected
for the runs on the Raspberry Pi, which has no active cooling system. The same linear pattern can also be seen for the
ISC measurement.

xScope - A overview of the DDS traffic in one domain

Introduction

Goal of the xScope

The goal of the xScope is to visualize DDS traffic and learn the basics of DDS. The xScope is able to subscribe to
various ‘Topics’ and log the data into a .csv file. The xScope is able to quickly give a graph for first impression at the
end of a measurement. A detailed graph can be made with the .csv file generated.

Getting started

24 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

On a Raspberry Pi (linux)

1. Build and Install Cyclone DDS

Go to the repository of Cyclone DDS. Follow the installation instructions in README.

Note: Sepcifying the DCMAKE_INSTALL_PREFIX path is not required. Directly do cmake .. and cmake –build .

2. Build and Install Python API of cyclonedds

Go to the repository of cdds-python. Follow the installation steps.

Note: Jsonpickle needs to be installed for python3 (pip3 install jsonpickle)

Errors may happen while building the Chameleon python API (in ‘bit’ folder). The key is to build the library
(ddsstubs.so and ddsc.so) for the python binding. Try the following steps if the normal steps do not work.

Copy the bit folder to the cyclone dds folder under example. Add addsubdirectory(bit) to the cmakelist. And rebuild
cyclone dds. By doing so you could get the library files in the lib folder in /build. Copy this 2 files to /usr/local/lib.

After installation you can test the API by running

$ python3 test_flexy_writer.py

3. Get the project files

Clone/Download the repository in bitbucket.

4. Install dependencies and Run the xScope

Note: For xScope to run the following dependencies need to be installed: numpy, pandas, matplotlib and tkinter

$ pip3 install numpy
$ pip3 install pandas
$ pip3 install matplotlib
$ sudo apt-get install python python3-tk

Note: Be aware to set the display settings, since xScope is a gui based application.

$ cd <directory name of repo>/src/demonstrators/XScopy/Python/poc1
$./configure
$ python3 xScope.py

On Windows

1. Install Visual studio with C/C++ supports

2. Build and install Cyclone DDS using VS compiler

1.2. Main Table of Content 25

https://github.com/eclipse-cyclonedds/cyclonedds/
https://github.com/Ashyglim/cdds-python/

DDS-Demonstrators, Release TechPush

Warning: Chameleon cannot be built on windows currently. Try to cross-compile the library file (.dll) on Linux.

How to run the xScope

How to run the xScope

• Make sure the device on which the xScope will be runned is connected on a network where DDS traffic is
available.

• Open xscope_config.py and add the ‘Topics’ from the DDS traffic which you want to see in the xScope.

• Save the file.

• Run the xScope python file in a Terminal (./xScope.py).

• Wait for some DDS traffic.

• When you have enough data close the xScope by pressing ctrl+c.

• The .csv file will be generated in the same folder as the xScope.py file and a graph will be shown.

• Close the graph to close the xScope.

Matrix Board Communication

The Matrix Board Communication DDS Demonstrator shows the application of the DDS protocol in a dynamic envi-
ronment. Each board should publish the traffic it senses. Each matrix board should dynamically find the two closest
upstream matrix boards and subscribe to them so it receives the traffic values they sense. According, to these two num-
bers the board should calculate the speed limit it will display. The traffic sensors are just random number generators
that have some lower and upper bound. Similarly, the displayed speed limit starts from the maximum initial limit and
decrements or increments in discrete steps while never going above the maximum.

Implementation

The Matrix Board Communication currently has the following implementations. Note that in some languages there
are multiple proof of concepts in order to show that the dynamic aspect can be implemented in various ways.

Matrix Board Communication in C

authors Stefanos Florescu

date March 2020

Before following this guide in order to execute the matrix board communication make sure you have successfully
installed CycloneDDS (Setup Guide for CycloneDDS).

26 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

Building the executable

Make sure your local repo is up to date with the HighTech-nl repo and move into the directory /
dds-demonstrators/src/demonstrators/MatrixBoard/C:

$ mkdir build
$ cd build
$ cmake ..
$ make

Running the Matrix Board Communication

The demonstrator can be executed either on one machine by creating different processes (in different terminal win-
dows) or by creating instances of the matrix boards on different nodes (i.e. on Raspberry Pis). A combination of the
two methods can also be utilized, in other words running multiple processes on each of the nodes in the network.

In order to run a matrix board instance execute the following command by providing an integer number which is the
ID of that particular board (i.e. a positive number):

$./MBC <MBC_ID>

Note: In the case that the wrong network interface is chosen by DDS at startup of the application see the notes in
Setup Guide for CycloneDDS for details on how to utilize the desired network interface.

Note: See Setting up Raspberry Pi network for a complete guide on Raspberry Pi networking as well as the IP
addresses for the network that is already in place.

Running the Matrix Board Communication in a Docker Container

Similarly to what we described above, the MBC experiment can be executed from a Docker Container. First make
sure you follow the guide on how to build the Docker Image which can be found in the Docker Guide: How to create
and run a Docker Image under “Building Demo Image”. First create a new container using:

$ docker run -it --network="host" --name <container name> <image name>

You can open another terminal/Powershell and have as many processes on that container as you want using per termi-
nal:

$ docker exec -it <existing container name> bash

Navigate into the MatrixBoard/ directory and run one of the three MBCs using:

$./MBC_poc<1 or 2 or 3> <MBC_ID>

A demo with two different containers can be seen in the video below. The terminals on the left side are processes of
container named dds1 while the ones on the right belong to container dds2. Then we change the network interface
so that it works properly on Windows (more details on this can be found in the warning right below). Finally, we start
Matrix Board with ID 1 and 3 in container dds1 and Matrix Board with ID 2 and 4 in dds2. This configuration
demonstrates the inter-container communication as well as the communication within the same container.

1.2. Main Table of Content 27

https://bitbucket.org/HighTech-nl/dds-demonstrators/src/master/

DDS-Demonstrators, Release TechPush

Warning: Due to the networking issue of the Docker Desktop (see in Docker Guide: How to create and run a
Docker Image under “Running Docker Containers” for more info) on Windows/MacOS we need to change the DDS
networking interface in the docker_cyclonedds_config.xml in /root/. In the video below you can find
an example of how to do that. On a Linux machine this is not required and your container will communicate over
the network.

Matrix Board Communication: Proof of Concept 1 (poc1)

The first version of the Matrix Board Communication (MBC) was a simple implementation that has as a goal to
introduce the user to a dynamic application of the DDS protocol. Each matrix creates the following entities:

• 1 Participant on the default domain.

• 1 Write topic, used to publish the traffic recorded by that particular MBC.

• 1 Writer, used to publish the traffic of that particular MBC.

• Array of read topics, starting from the ID of that particular MBC and up to a
predefined constant number.

• Array of readers, starting from the ID of that particular MBC and up to a
predefined constant number.

In order to achieve the dynamic switching of boards, we create an array of topics and an array of readers on all those
topics up to a predefined number (MAX_SEARCH). As a result, the dynamic behavior is achieved in a purely algorith-
mic method, by simply iterating up to that MAX_SEARCH until we find the two closest active MBCs. Furthermore,
each MBC continuously writes its own topic without checking if there are any active readers. This method, albeit
simple, will not have great performance especially due to the following reasons:

1. Large switching time, especially for large gaps between MBCs (i.e. between board
with ID 1 and board 9000).

2. Increased overhead in each polling iteration, since the closest MBCs are always
recalculated.

3. Increased algorithmic complexity, due to two nested for loops used for the
dynamic search algorithm.

4. Unnecessary network usage, since in every polling iteration we write the traffic
without checking for events (i.e. new data being available and/or active readers on that topic).

5. Unnecessary memory usage, since we only require at most 2 read topics and 2
readers per MBC and we actually have two arrays of size MAX_SEARCH - MBC_ID

with signed 32-bit integers at each entry.

Matrix Board Communication: Proof of Concept 2 (poc2)

The second version of the Matrix Board Communication (MBC) has as a goal to expand upon poc1 while solving
some of the issues of poc1 that were presented previously. This solution is based on the use of status and event driven
DDS implementation. Similarly to poc1, each matrix creates the following entities:

• 1 Participant on the default domain.

• 1 Write topic, used to publish the traffic recorded by that particular MBC.

• 1 Writer, used to publish the traffic of that particular MBC.

28 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

• Array of read topics, starting from the ID of that particular MBC and up to a
predefined constant number.

• Array of readers, starting from the ID of that particular MBC and up to a predefined
constant number.

The main search algorithm remains the same, but now each MBC writes to its own topic only when there
are matched active MBCs that should read that topic. This is achieved by using on the writer side the
dds_get_publication_matched_status function which returns a struct containing information on the num-
ber of matched readers, the total number of matched readers, the change of readers and the handle of the last matched
reader (more information on this function can be found Statuses for DataWriters). Similarly on the reader side we in-
troduce the function dds_get_subscription_matched_status, which provides the same information about
matched writers to that particular reader (more information on this function can be found Statuses for DataWriters).
As a result, we can now see if we have an active writer to a topic without having to do a dds_take or dds_read to
see whether there are any available samples on that topic. Although, these additions do not fix all of the performance
issues introduced with poc1, the list of performance bottlenecks is reduced to the following:

1. Lower than poc1 but still large switching time, especially for large gaps between
MBCs (i.e. between board with ID 1 and board 9000).

2. Reduced overhead by comparison to poc1 but still increased overhead in each polling
iteration, since the closest MBCs are always recalculated.

3. Increased algorithmic complexity, due to two nested for loops used for the dynamic
search algorithm.

4. Unnecessary memory usage, since we only require at most 2 read topics and 2 readers
per MBC and we actually have two arrays of size MAX_SEARCH - MBC_ID with signed
32-bit integers at each entry.

Matrix Board Communication: Proof of Concept 3 (poc3)

The third version of the Matrix Board Communication (MBC) is the most complex and has as a goal to solve all of the
previously introduced issues. The approach in this case is completely new by introducing the following novelties:

• Membership, each MBC will have to announce its liveliness by writing to a dedicated topic.

• Liveliness changes, using listeners attached to callback functions
(more information can be found Types of Listeners).

• Usage of sample_info to extract valuable sample information.

• Hash tables, each MBC will have a hash table where each active MBC will be stored.

Each MBC will have the following entities:

• 1 Participant on the default domain.

• 1 Write topic, used to publish the traffic recorded by that particular MBC.

• 1 Writer, used to publish the traffic of that particular MBC.

• 2 Readers, used to read the traffic published by other MBCs.

• 1 Membership topic, where the liveliness of all active MBCs can be found.

• 1 Membership writer, used to announce the liveliness of that particular MBC.

• 1 Membership reader, used to read the membership topic.

1.2. Main Table of Content 29

https://tinyurl.com/rx269d5
https://tinyurl.com/rx269d5
https://tinyurl.com/vfp5adr

DDS-Demonstrators, Release TechPush

In a nutshell, a new active MBC will announce that it is alive by writing to the membership topic its own ID num-
ber, all of the other MBCs will detect this liveliness change using their liveliness change callback function and will
read the membership topic. Upon reading the ID of the new MBC each of the previously active MBCs will add that
new MBC in their hash table using the modulo of the publication handle of that particular sample over the prede-
fined hash table size as the hash code. Furthermore, after adding the new MBC all of the previously active MBCs
will also write to the membership topic their own IDs. Therefore, the new MBC will add all of the pre existing
MBCs to its own hash table. Similarly, when a MBC goes offline, the other MBCs detect that event through the
same liveliness change callback function and extract the publication handle of the offline MBC using the function
dds_get_liveliness_changed_status which returns a similar struct to the functions presented in poc2.
Using that handle each of the online MBCs removes the offline MBC from their hash table.

At this point it is interesting to present some of the functions the hash table utilizes for all of the operations mentioned
above.

//used to calculate the hash code.
dds_instance_handle_t hashCode(dds_instance_handle_t key);

//search for a MBC based on its handle.
struct DataItem* hash_search(dds_instance_handle_t key);

//insert a new MBC based on its handle.
void hash_insert(dds_instance_handle_t key, int32_t data);

//delete a MBC based on its handle.
struct DataItem* hash_delete(struct DataItem* item);

//print all contents of the hash table (i.e. mainly for debugging).
void hash_display();

//count the number of entries in the hash table.
int hash_count();

//find the smallest ID number in the hash table (excluding the ID of the MBC
→˓requesting this).
int hash_return_first_min(int32_t mbc_id);

//find the second smallest ID number in the hash table (excluding the ID of the MBC
→˓requesting this).
int hash_return_second_min(int32_t mbc_id, int32_t min1);

Using the two last functions from the code block above, each MBC can determine to which other MBCs it has to
subscribe in order to receive their traffic values. This implementation solves the algorithmic complexity issue since
the hash table finds entries based on their hash and not by looping over all of them. Furthermore, memory is used
efficiently without keeping unnecessary entities and hash entries. Overall, this implementation minimizes the time
required by the dynamic subscription and outperforms the previous proofs of concept by a vast margin.

Links

• Statuses for DataWriters: https://tinyurl.com/rx269d5

• Statuses for DataReaders: https://tinyurl.com/wf8bgdv

• Types of Listeners: https://tinyurl.com/vfp5adr

30 Chapter 1. Measure & Blog

https://tinyurl.com/rx269d5
https://tinyurl.com/wf8bgdv
https://tinyurl.com/vfp5adr

DDS-Demonstrators, Release TechPush

Matrix Board Communication in C++

authors Joost Baars

date June 2020

Description

This page describes the matrix board demonstrator in C++. The matrix board demonstrator is explained in Matrix
Board Communication. This page starts with how the application can be built and executed. Afterward, the structure
of the application is described in detail.

The matrix board C++ directory can be found in src/demonstrators/MatrixBoard/C++/. This directory
contains the matrix board application in C++.

This matrix board application contains a similar implementation compared to the poc3 of the C implementation
(Matrix Board Communication in C). Therefore, this is a dynamic implementation of the matrix board application.

Dependencies

The necessary dependencies for succesful compilation of the matrix board application in C++ are the following:

• CMake

• C++17 compiler (Gcc 7+ for example)

• Cyclone DDS library

Installing Cyclone DDS and the other dependencies can be found in: Clean Install with internet.

Building

First, go to the C++ matrix board directory (see Description).

Execute the following commands:

mkdir build && cd build
cmake ..
make

These commands compile the code and create the executable for the C++ matrix board application.

Execution

The application must be executed using one parameter. The application can be executed using the following command:

./MatrixBoard <Matrixboard ID>

A more thorough description of the parameters can be found when executing the application with no parameters.

Note: Execution of the program

The <Matrixboard ID> parameter should be unique for every matrix board. Additionally, it may not be less than 1.

1.2. Main Table of Content 31

DDS-Demonstrators, Release TechPush

The order at which matrix boards are started does not matter.

Example

For example, two matrix boards can be started to see the communication between the two applications.

Open two terminals and go to the location where you built the matrix board application.

Execute the following in one terminal

./MatrixBoard 10

And the following command in the other terminal:

./MatrixBoard 15

When the second matrix board is started, logging should be shown. The logging that can occur is described in the
chapter below.

Logging information

The matrix board application prints information to the terminal/standard output. This logging contains information
that is classified with different tags.

Each tag is described below.

INFO

The INFO tag shows general information of the matrix board. It contains a starting message. The INFO tag is also
used to display the speed of the matrix board. If the maximum speed changes, the new maximum speed is printed
using the INFO tag.

When new traffic data is received, it is also shown with the INFO tag. The newly received traffic data is printed towards
the terminal including the matrix board ID from which the traffic data came.

CONNECTED or DISCONNECTED

The CONNECTED and DISCONNECTED tag are shown when changes occur with the subsequent matrix boards.

An example of the logging can be seen below. In this example, only one subsequent matrix board is connected. There
is no second subsequent matrix board on the network. The connected subsequent matrix board has an ID of 5.

[2020-06-04 00:10:07.677]: CONNECTED: Subsequent matrix board: 5
[2020-06-04 00:10:07.678]: DISCONNECTED: After the subsequent matrix board
→˓disconnected!

Each of the two subsequent matrix boards has its own message regarding if it is connected or not.

ERROR

The ERROR tag is used to show that an error occurred with the communication or the matrix board.

Implementation

This matrix board implementation works dynamically. Therefore, the order of adding matrix boards does not matter
as well as the ID’s of the matrix boards.

32 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

For example, a matrix board with ID 1 can have a matrix board with ID 1000 as the subsequent matrix board (if no
other matrix boards exist in between).

In the deployment diagram below, the communication between different sub-classes can be seen. The clouds in the
diagram are the different DDS topics. This diagram only shows the communication of one of the matrix boards.

This diagram shows that there is one “global” topic, which is a topic that does not belong to a specific matrix board.
All matrix boards write to that topic once at the beginning of their lifecycle. Afterward, they only read the ID’s of the
other matrix boards from that topic.

The other topics belong to a matrix board. The matrix board that belongs to the topic (same ID) writes its sensor data
to that topic. The preceding two matrix boards read the data from that particular topic.

The debug topic can be used to calculate the time between connecting and being connected to a topic. As well as
disconnecting and being disconnected from a topic. This is not done in the matrix board application, but the possibility
is there because of the debug topic.

1.2. Main Table of Content 33

DDS-Demonstrators, Release TechPush

Class diagram

The class diagram is shown below. This class diagram shows that the intelligence of the system is the MatrixBoard
class. This class executes everything and contains a run() function that runs the matrix board application.

Each part of DDS is separated into its own class. This is divided into 2 classes and one abstract base class.

The ActiveMatrixBoardManager class manages the “global” topic and can return the ID’s of the two subsequent matrix
boards.

The DDSActiveMatrixBoard class manages the DDS part of the “global” topic.

The SpecificMatrixBoard manages a matrix board topic with a certain ID. This class can read and write from the topic
it is connected to. This class is used for the 2 subsequent matrix boards (read-only) and for its own matrix board
(write-only). Therefore, there are 3 classes of these.

There are two packages in this class diagram. One for the matrix board functionalities. The other is the debug
package. The DebugTopicManager class can be used for sending debug messages to a DDS debug topic (using
the DebugTopicDDS class). The DebugTopicManager class is a fully static class, so the debug functions are easily
accessible in the matrix board.

Global topic / ActiveMatrixBoards class

This chapter describes the application in a technical manner.

The ActiveMatrixBoards class contains the logic for defining the subsequent 2 matrix boards. This class uses
the DDSActiveMatrixBoard class for communication with the “global” topic.

The settings for the “global” topic are configured in the DDSActiveMatrixBoard class. The “global” topic is configured
to have a history of 1 and a durability transient local. The history of 1 ensures that the last message of each writer is
stored and can be resent. The durability transient local ensures that if a new reader connects, it receives previously
send messages from the writer. This durability setting also specifies that the previously sent messages are stored by
the writer. This is important because if the writer disconnects, we don’t want to see it’s message anymore. This
combination makes sure that the last message of a writer is resent to a newly connected reader, but only if that writer
still exists.

Each matrix board only writes once to the “global” topic, containing the ID of that matrix board. This message will
automatically resend if a new matrix board connects (this is done by DDS). Therefore, all matrix boards know the ID of
every other matrix board. Because when they connect, they receive the last message of each matrix board (containing

34 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

the ID). And if they are alive when a new matrix board connects, it just reads the message of the newly connected
matrix board.

The liveliness is also configured for the “global” topic. This is used for removing disconnected matrix boards and
reconnecting to a different matrix board that is alive. DDS uses handles for each DDS instance. This handle is added
to every DDS message and is also added to the liveliness status. Therefore, this can be used to know what matrix board
disconnected when the liveliness changes.

The ActiveMatrixBoardManager class contains an ordered map with the ID and the handle of each matrix
board. When a matrix board disconnects, this matrix board is removed from the map based on its handle. This map is
ordered based on the ID of the matrix board. Therefore, the subsequent matrix boards can easily be found within the
map. Scalability wise, this map becomes larger as more matrix boards are on the network. Therefore, this method is
not ideal for a fully scalable matrix board network.

When the ActiveMatrixBoardManager class registers to the topic, it reads all existing messages from the topic
and fills the ordered map with the existing matrix boards. If there is a liveliness update, it checks if a device is added
or removed. If a device got added, it reads the new message on the topic. If a device got removed, it reads the handle
of the disconnected matrix board and removes that device from the map. Afterward, it checks if the subsequent matrix
boards got changed. If so, this is updated to the new ID’s.

MatrixBoard class

This class executes everything and contains the run loop for the matrix board application.

At the beginning of the run loop, the registerToTopic() functions are executed for both the OwnMatrixBoard
and the ActiveMatrixBoards classes. This initializes DDS to register to the topic. Furthermore, a timer is
initialized to send the traffic data to its own topic with a certain interval. This timer is set on 1 second. So traffic data
is sent to its own topic every second.

There are mainly 3 parts in the matrix board run loop. The first is checking the timer. If the timer has passed,
the newest sensor data is requested and send to its own topic using the OwnMatrixBoard class. Additionally, the
display of the matrix board is also updated in this timer.

The second part is checking for updates on the “global” topic. This is done by executing the checkChanges()
function in the ActiveMatrixBoards class. If there are changes, the `SpecificMatrixBoard objects that
point to the subsequent matrix boards are updated. These objects are stored in a so-called smart-pointer which handles
the allocation and deallocation of the resource. This smart-pointer is simply set to a new SpecificMatrixBoard
object when the ID’s of the subsequent matrix boards changes.

The third and last part of the run loop reads the traffic data from the 2 subsequent matrix boards (if they exist).
First, the smart-pointer is checked if there is an object stored. If so, the checkNewData() function from the
SpecificMatrixBoard class is executed. At last, this data is read using getLastMessage() function if new
data is received. If there was no object stored in the smart-pointer in the first place, then nothing would happen. As
there is apparently no subsequent matrix board.

Specific Matrixboard class

This class connects to a specific matrix board topic. Each matrix board is connected to its own topic and writes its
own sensor data towards that topic. Additionally, each matrix board is connected to 2 subsequent matrix board topics
(if they exist). Therefore, there are a maximum of 3 specific matrix board objects created.

The specific matrix board class creates its own DDS participant. This is done because specific matrix board objects
should be easily deletable and new objects for different topics should be easily creatable. If the participant was not
managed by the specific matrix board, then the previously allocated readers or writers of the specific matrix board
would stay alive when the specific matrix board object would be removed. This results in no liveliness change when

1.2. Main Table of Content 35

DDS-Demonstrators, Release TechPush

it should. Additionally, this would use more memory and would have a negative impact on the dynamic aspect of the
matrix board application.

The specific matrix board has by default a liveliness callback function for the writer and a different callback function
for the reader. The reader gets a callback if the liveliness changes of the writer on the topic. The writer gets a callback
when a reader connects or disconnects from the topic. The use of these callbacks are only the debug messages. To
detect when a device connects/disconnects from a certain topic.

Debug topic

The class diagram also contains a debug topic. This debug topic is added for debug purposes. A timestamp is sent to
the debug topic when a matrix board connects to a specific matrix board topic and when it is connected to that topic.
When a device disconnects from the specific matrix board topic, a timestamp is also sent to the debug topic.

The debug functionalities can be used to see when a device connects or disconnects. Additionally, the time of con-
necting/disconnecting can be measured.

Links

• DDS durability

Matrix Board Communication in Python

For the matrix board different implementations have been created.

Proof of concept 1 - python

This implementation uses a single topic to which all nodes write and read. On detection of another reader it is
determined whether the information for this reader is relevant.

Note: For this implementation to run the following dependency needs to be installed: pynput This dependency is
used for the keyboard strokes to be handled during the execution.

pip3 install pynput

Note: Be aware to set the display settings, these are required

cd <name of the repo>/src/demonstrators/MatrixBoard/Python/poc1
python3 node.py <location marker>

for <location marker> 17.1, 17.2, etc. can be used.

Proof of concept 2 - Python

This implementation uses more than one topic. Each node writes to its own topic and determines if there is a next
topic to read from. The information of the two next topics will be used. In case one of the next topics is not a preferred
topic and a preferred one becomes available, the preferred one will replace the other.

36 Chapter 1. Measure & Blog

https://community.rti.com/static/documentation/connext-dds/5.3.0/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/Content/UsersManual/DURABILITY_QosPolicy.htm

DDS-Demonstrators, Release TechPush

Usage:

python3 MatrixBoard.py <topic number>

The <topic number> must be a value: 1..10

Compared to other protocols

Below are the measurements using RoundTrip, where ms/msg represents the amount of time it takes for the message
to make a round trip.

RoundTrip
Language: python3

IPC measurements ISC measurements
protocol ms/msg ms/msg
MQTT 4.694029412 6.052571429
ZMQ 0.540805556 1.617088235
DDS under construction under construction

Below are the measurements using RoundTrip and testing the bandwidth, where ms/msg represents the amount of time
it takes for a bunch of messages to make a round trip.

Bandwidth
Language: python3

IPC measurements ISC measurements
protocol ms/msg ms/msg
MQTT 9.5 6.5
ZMQ 0.4 7.3
DDS under construction under construction

Bandwidth

MQTT-Bandwidth

to start the bandwidth test go to either the isc or ipc folder and run: sh run.sh they both use the same MQTT.py script
be sure to read the corresponding readme to make sure the necessary components are in placels

MQTT-IPC

run the run.sh file and it will set up a local round trip

requirements: mqtt must be installed then this script can run locally

MQTT-ISC

Running the run.sh shel script wil setup a roundtrip over four different systems.

The following components must be in place in order for it to work: three systems(raspberries) with python paho
mqtt installed. one system with mosquitto and python paho mqtt installed The ips of the external systems must be
192.168.0.200, 192.168.0.201, 192.168.0.203 run.sh must be run on a system with ip 192.168.0.202

1.2. Main Table of Content 37

DDS-Demonstrators, Release TechPush

ZMQ-bandwidth

there are two folders ipc and isc each folder contains a run.sh. Run that file and it will setup either a local roundtrip
using the bandwidth method(ipc) or it will launch programs spread over 4 raspberries the isc folder also has a loop.sh
which simply runs run.sh continuously

Matrixboards

MQTT

Description

The problem description for the matrixboard can be found at: Matrix Board Communication.

Implementation

There are different implementations of the MQTT matrixboard solution. A short description is made for the execution
of a particular implementation. This description contains information about how the implementation can be compiled
and executed.

This list contains the different implementations:

MQTT Matrixboard

authors Sam Laan

date March 2020

Description

This page contains the information needed to run the MQTT C++ matrixboard solution. It is assumed that the MQTT
broker and paho C++ library are already installed. If not please refer to the MQTT C++ page (MQTT C++).

How to run

Note: For collecting measurements The collection of measurement data is built within the application. It is stored in
a .csv file. To create this file please refer to Measurement file

To run the program navigate to the /src/demonstrators/ComparedToOtherProtocols/MQTT/MatrixBoard/C++ folder
of the repository. The source code and CMakeLists of the program are in this folder. To build the solution perform the
following commands:

mkdir build
cd build
cmake ..
make -j4

38 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

An executable called ‘mqttmatrixboard’ should have appeared in the build folder. To make the program work a broker
must be running. This broker can be started by using the following command in terminal:

mosquitto

When the broker is started, it’s time to start the program. This can be started by running the following command:

./mqttmatrixboard

The matrixboard application will ask for a number. This number is the id of the matrixboard. The matrixboard
will publish to a topic that has the matrixboard id as its name. Other matrixboards can subscribe to this topic to
receive the information. Matrixboards will subscribe according to the matrixboard problem description (Matrix Board
Communication). Besides that, this number will also be used as client id within MQTT. If you try to start another
client(matrixboard) with the same ID it will kill the old matrixboard and then start the new one.

Performance

The collection of performance measurements is built into the application itself. It writes the time it sends and receives
messages to a CSV file. This CSV file can be used to visualise the data using various tools to do so. In this case, Excel
has been used. The choice for Excel was made because it is a commonly known and used program and it is installed
on a Capgemini/Sogeti laptop by default. The processed_measuremens.xlsx file shows an example of how to visualise
the CSV data using Excel and Power Pivot. More on Excel and Power Pivot can be found here Power Pivot.

Findings

The performance test was executed with 3 matrixboards and resulted in the following graphs (time is measured in ms).

1.2. Main Table of Content 39

DDS-Demonstrators, Release TechPush

40 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

These graphs show that the QoS 0 can send the most messages in a short amount of time. The downside is that the
application crashed after about 950 messages because of an overflowing buffer MQTT error [-12]. This is because
MQTT was not designed to handle this much messages in such a short amount of time(see the resilient mqtt application
link). With QoS 1 the delivery time is more stable, this is because QoS 1 is slower which causes the buffer to not
overflow during the test. An increase in delivery time can be seen once board 3 is up(around 184). Besides this, the
spike is when board 3 goes the down. After that messaging resumes with low delivery time. Almost the same can be
said for QoS 2 although QoS 2 is a bit slower compared to QoS 1. Taking almost a second for receiving a message
whilst 2 boards are up. This data was collected using the first version of the MQTT matrixboard solution. Delivery
time is the time between the sending of a message from one board To the time of receiving the message by another
board.

Measurement file

The file in which the measurements are stored in CSV format is called measurements.csv. An executable is built during
the ‘make’ process to create this CSV file in correspondence with the data that will be stored in it. This executable
deletes any existing file called measurements.csv in the build folder and creates a new one containing the data headers
only. To start the executable run the following command:

./measurementsfiles

Links

• resilient mqtt application: https://www.hivemq.com/blog/are-your-mqtt-applications-resilient-enough/
#throttling

ZMQ

authors Sam Laan

date March 2020

Description

The problem description for the matrixboard can be found at: Matrix Board Communication.

Dynamic discovery problem

Note: From the ZeroMQ guide (http://zguide.zeromq.org/page:all)

One of the problems you will hit as you design larger distributed architectures is discovery. That is, how do pieces
know about each other? It’s especially difficult if pieces come and go, so we call this the “dynamic discovery problem”.

There are several solutions to dynamic discovery. The simplest is to entirely avoid it by hard-coding (or configuring)
the network architecture so discovery is done by hand. That is, when you add a new piece, you reconfigure the network
to know about it. In practice, this leads to increasingly fragile and unwieldy architectures. Let’s say you have one
publisher and a hundred subscribers. You connect each subscriber to the publisher by configuring a publisher endpoint
in each subscriber. That’s easy. Subscribers are dynamic; the publisher is static. Now say you add more publishers.

1.2. Main Table of Content 41

https://www.hivemq.com/blog/are-your-mqtt-applications-resilient-enough/#throttling
https://www.hivemq.com/blog/are-your-mqtt-applications-resilient-enough/#throttling
http://zguide.zeromq.org/page:all

DDS-Demonstrators, Release TechPush

Suddenly, it’s not so easy any more. If you continue to connect each subscriber to each publisher, the cost of avoiding
dynamic discovery gets higher and higher.

The very simplest answer is to add an intermediary. A static point in the network to which all other nodes connect. In
classic messaging, this is the job of the message broker. ZeroMQ doesn’t come with a message broker as such, but
it lets us build intermediaries quite easily. It’s better to think of intermediaries as simple stateless message switches.
A good analogy is an HTTP proxy; it’s there but doesn’t have any special role. Adding a pub-sub proxy solves the
dynamic discovery problem in our example. We set the proxy in the “middle” of the network. The proxy opens an
XSUB socket, an XPUB socket, and binds each to well-known IP addresses and ports. Then, all other processes
connect to the proxy, instead of to each other. It becomes trivial to add more subscribers or publishers.

We need XPUB and XSUB sockets because ZeroMQ does subscription forwarding from subscribers to publishers.
XSUB and XPUB are exactly like SUB and PUB except they expose subscriptions as special messages. The proxy
has to forward these subscription messages from subscriber side to publisher side, by reading them from the XPUB
socket and writing them to the XSUB socket. This is the main use case for XSUB and XPUB.

Implementation

There are different implementations of the zmq matrixboard solution. A short description is made for the execution
of a particular implementation. This description contains information about how the implementation can be compiled
and executed.

This list contains the different implementations:

ZMQ C++ Matrixboard

authors Sam Laan

date March 2020

Description

This page contains the information needed to run the ZMQ C++ matrixboard solution. It is assumed that you have
already installed the zeromq C and C++ libs. If not please refer to the ZMQ C++ page(ZMQ C++).

42 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

How to run

Note: For collecting measurements The collection of measurement data is built within the application. It is stored in
a .csv file. To create this file please refer to Measurement file

To run the program navigate to the /src/demonstrators/ComparedToOtherProtocols/ZMQ/MatrixBoard/C++ folder of
the repository. The source code and CMakeLists of the program are in this folder. Now to build the solution perform
the following commands:

mkdir build
cd build
cmake ..
make -j4

Two executables called “zmqmatrixboard” and “matrixboardproxy” should have appeared in the build folder. These
can be started using the following commands:

./matrixboardproxy

./zmqmatrixboard

The matrixboardproxy will show on which ports it runs. The proxy is necessary for discovery, more on that in the
section below. The zmqmatrixboard program will ask for a number. This number can range from 1 till 9. This number
will be the id of the matrixboard and will determine on which port the matrixboard publishes.

Performance

The collection of performance measurements is built into the application itself. It writes the time it sends and the time
it receives messages to a CSV file. This CSV file can be used to visualise the data using various tools to do so. In this
case, Excel has been used. The choice for Excel was made because it is a commonly known and used program and it is
installed on a Capgemini/Sogeti laptop by default. The processed_measuremens.xlsx file shows an example of how to
visualise the CSV data using Excel and Power Pivot. More on Excel and Power Pivot can be found here Power Pivot.

Findings

The performance test was executed with 3 matrixboards and resulted in the following graphs(time is measured in ms).

1.2. Main Table of Content 43

DDS-Demonstrators, Release TechPush

The graph shows that the delivery time steadily increases. This is because the application can send messages faster
than it can process them. This results in a message queue which keeps on growing. The last message was not received
because the application was stopped before it could receive it. This explains the drop in the graph at the last message.

Measurement file

The file in which the measurements are stored in CSV format is called measurements.csv. An executable is built during
the ‘make’ process to create this CSV file in correspondence with the data that will be stored in it. This executable
deletes any existing file called measurements.csv in the build folder and creates a new one containing the data headers
only. To start the executable run the following command:

./measurementsfiles

MQTT, DDS, ZMQ Matrix board application in C++

authors Sam Laan

date Jun 2020

44 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

Description

The matrix board C++ directory can be found in src/demonstrators/ComparedToOtherProtocols/
Multiple/MatrixBoard/C++/. This directory contains the matrix board application in C++.

This matrix board application contains a similar implementation compared to the poc3 of the C implementation
(Matrix Board Communication in C). This is therefore a dynamic implementation of the matrix board application.

The application was written for usage with real-time posix threads. It is also possible to run it on a non real-time posix
system.

Dependencies

The dependencies necessary for successful compilation of the matrix board application in C++ are the following:

• CMake

• C++17 compiler (Gcc 7+ for example)

• paho.mqtt.cpp library (installation: MQTT C++)

• cppzmq library (installation: ZMQ C++)

• Cyclone DDS library (installation: Setup Guide for CycloneDDS)

• MQTT server compatible with MQTT 5 (mosquitto(installation: MQTT C++) for example)

Building

To build the application run the following commands in the matrix board application source directory.

mkdir build && cd build
cmake ..
make

These commands will compile the source code and generate an executable.

To build the ZMQ proxy run the following commands in the matrix board application source directory.

cd zmqproxy
mkdir build && cd build
cmake ..
make

These commands will compile the source code and generate an executable for the proxy.

Execution

Todo: Fix MQTT, DDS, ZMQ Matrix board application in C++.

The matrix board application sends out messages each 24 milliseconds, and is also receiving messages from two other
boards at this pace. Each time a message is sent or received, the message and a timestamp are written to a file. This
is done by creating a thread so that the main applications performance will be affected minimally by writing these
messages. The application may crash after a while due to the high number of threads created to write measurements.

1.2. Main Table of Content 45

DDS-Demonstrators, Release TechPush

An error will occur because no further threads can be started at that point. If you think you can go ahead i wish you
the best of luck!

The application needs to be started as super user, otherwise the starting of the posix threads whill fail due to their
attributes. The first parameter of the program determines which protocol to use. The value of this parameter can be
either DDS, ZMQ or MQTT. The number of parameters after the first one differs per protocol. To start the application
with DDS the following parameter structure needs to be followed:

sudo ./rt_matrixboard DDS <Matrixboard ID>

In practice this means that matrix board one can be started by running the following command:

sudo ./rt_matrixboard DDS 1

When starting the application with ZMQ more parameters are needed. This can be done using the following parameter
structure.

sudo ./rt_matrixboard ZMQ <Matrixboard ID> <Server sub address> <Server pub
→˓address> <Own address>

In practice this means that matrix board one for example, can be started by running the following command:

sudo ./rt_matrixboard ZMQ 1 tcp://192.168.178.32:5550 tcp://192.168.178.
→˓32:5551 tcp://192.168.178.39:5552

Besides this, for the communication to work using ZMQ the proxy should be started. The zmq proxy can be started
form the build folder of the zmqproxy folder. Connect the socket according to the ports and address used for the proxy.
The broxy can be started by running the following command:

./matrixboardproxy

When starting the application with MQTT more parameters are needed. This can be done using the following param-
eter structure.

sudo ./rt_matrixboard MQTT <Matrixboard ID> <Broker address> <QoS>

In practice this means that matrix board one for example, can be started by running the following command:

sudo ./rt_matrixboard MQTT 1 tcp://192.168.178.32:1883 0

For the MQTT implementation to work a broker must have been started. Connect the matrix board application accord-
ing to the network address of the broker. When using the mosquitto broker the following terminal command can be
used to start it:

mosquitto

This terminal will show connecting clients. If no clients pop up when starting the matrix board application but the
communication still works please check if there is another mosquitto instance running. If the clients don’t pop up and
the communication does not work check the address of the broker with the address parameter of the application.

A more thorough description of the parameters can be found when executing the application with a wrong number of
parameters or can be read from the source of main.cpp.

Implementation

The figure below shows the design of the application in a class diagram.

46 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

sudo ./rt_matrixboard DDS <Matrixboard ID>

The communication of the boards is done through a few topics. There is one network topic, each matrix board is
subscribed to this topic. All messages concerning the connection of matrix boards are posted on this topic. This makes
it possible for the boards to know which other boards are within the network so that they may subscribe accordingly.
For publishing traffic intensity values each matrix board has a topic equal to its ID. To receive the traffic intensity
values of a board other boards will subscribe to this topic. To receive the messages the matrix board makes use
of the communication interface class. furthermore, this is also used to subscribe and unsubscribe from topics. The
protocol which the matrix board is going to use is determined before its initialization. Based on a variable passed in
the application either a DDS, MQTT or a ZMQ communication object will be initialised. This will be passed to the
matrix board, which now uses this protocol for its communication.

Each protocol object implements the communication interface functions. However, there is, of course, some difference
amongst the implementation. For connecting to the network ZMQ connects to the proxy, this proxy is used as an
intermediary which all networking messages will be posted to. This allows ZMQ to detect other endpoints in the
network to which they can connect. Other than ZMQ, MQTT connects to a broker, this is also an intermediary but all
the MQTT messages go to this intermediary, therefore it only has to connect to this broker. Next DDS, has endpoint
discovery built-in and connects directly to its subscriptions, it does need a unique reader and writer for each topic to
read or write from, these are implemented. This also means that the DDS implementation has no single point of failure
as it does not depend on any intermediary. On the contrary, if the broker breaks the MQTT implementation will not
be able to communicate anymore. Next, in the ZMQ implementation discovery will be impossible if the proxy breaks
down. However, sockets already connected can still communicate. Another thing taken from this is the di erence of
connecting, while the MQTT connects to a broker, ZMQ connects through sockets and DDS connects through the
protocol itself. Besides this difference, there is also a difference in the type of message sent. While DDS takes structs
as messages the others do not. To keep the output of the communication the same struct is used, as DDS uses structs
naturally, the used structs were the structs generated for DDS using an IDL fi le. This IDL file can be found in the
source directory of the application. However, the other protocols implement functions to turn these structs into the
types they need to send messages and the other way around for the application.

The matrix board class implements all the functionality of the matrix board application. It starts a thread to send
out its traffic intensity and a thread to check the liveliness of its subscriptions. The traffic messages are sent with a
minimal gap of 24 milliseconds. For the liveliness, subscriptions which the board has not received messages from for
two seconds or longer are deemed disconnected. The board will notify the rest of the system of this disconnection by

1.2. Main Table of Content 47

DDS-Demonstrators, Release TechPush

sending a message to a common topic.

The main thread will handle the received messages. If a network message is received a thread will be started to
handle the message, the main thread can receive a new message while the network message is still being processed.
In addition, the same is true for traffic messages. The network message processing thread determines whether a
subscription should be added, deleted or if there is no action to be taken based on the contents of the message and the
current subscriptions. On the other hand, the traffic thread updates the traffic intensity values of the subscriptions, it
also determines which sign should be shown based on the updated value. To set the displayed sign, it makes use of
the display object. If there is a board to display, this will be set and the lights will blink, this is done using the light
objects.

The application uses the test class to write their measurements to a file. These measurements are all timing measure-
ments, the high-resolution clock is used to get the most precise measurements.

PingPong

MQTT-PingPing

• There is only 1 program: PingPong

• You need to a MQTT broker: See http://mosquitto.org

• Start that first, then run PingPong

• It will print some status EVERY few messages; seconds or seconds – depending on system-speed

• Terminate with ^C

Note: on a RaspberryPi, when mosquitto is installed (apt-get) it will run a broker by default – fine

ZMQ-PingPong

• First start Ping, then Pong; in 2 terminals

• Optionally: specify port number (same for both)

• Stop (both) by killing (^C) them

• Currently, Ping & Pong use tcp on localhost

• TODO: use other hosts, other protocols (like ipc) and other network-patters (see ZMQ, docs)

next to the ping pong there are the roundtrip and bandwidth folder which include instructions on how to set them up

RoundTrip

MQTT-RoundTrip

In the sub files programs are contained to run the round trips. Each file contains instructions to run them.

MQTT Round trip in C++

authors Sam Laan

date Apr 2020

48 Chapter 1. Measure & Blog

http://mosquitto.org

DDS-Demonstrators, Release TechPush

Description

The round trip C++ directory can be found in src/demonstrators/ComparedToOtherProtocols/MQTT/
RoundTrip/C++/. This directory contains a folder for the round trip implementation as well as the flood imple-
mentation.

This page contains information about the round trip and flood applications made in C++ using MQTT.

Dependencies

The dependencies necessary for successful compilation of the round trip / flood application in C++ are the following:

• CMake

• C++17 compiler (GCC 7+ for example)

• paho.mqtt.cpp library (installation: MQTT C++)

• MQTT server compatible with MQTT 5 (mosquitto(installation: MQTT C++) for example)

Round trip

This chapter contains information about the round trip application. This application can be found in the directory:
src/demonstrators/ComparedToOtherProtocols/MQTT/RoundTrip/C++/RoundTrip.

Configuring

The CMake file can be found in the source directory of the round trip. This file can be configured to either build the
implementation using polling for the round trip or the one using a callback. To build the polling implementation make
the following change to the Cmake file.

set(PROJECT roundtrip_read)

The line to change can be found at the top of the Cmake file. To build the callback implementation set this line to:

set(PROJECT roundtrip_callback)

Building

To build the application run the following commands in the round trip implementation source directory.

mkdir build && cd build
cmake ..
make

These commands will compile the source code and generate an executable.

Execution

The application takes several parameters for its execution. It can be executed using the following command in the
build folder:

1.2. Main Table of Content 49

DDS-Demonstrators, Release TechPush

./RoundTrip <device ID> <number of devices> <total round trips> <QoS>

A more thorough description of the parameters can be found when executing the application without parameters or
can be read from the source of main.cpp. The following example starts 4 nodes for the round trip using MQTT QoS
level 1. The slaves of the round trip are started in the background. Only the master is started in the foreground in this
example. Each device pings a total of 1000 times. Therefore, there are 1000 round trips.

./RoundTrip 2 4 1000 1 & ./RoundTrip 3 4 1000 1 & ./RoundTrip 4 4 1000 1 &

./RoundTrip 1 4 1000 1

Note: Execution of the program

The round trip is initiated by the device with <device ID> = 1. Therefore, <device ID> = 1 should always be started
last.

The devices added with <device ID> must be an increment of the previous one. This function does not dynamically
search for the next device! So if there are four devices, device 2 should be started first, then 3 after that 4 and as last
device 1 should be started as 1 should always be started last.

The <total round trips> parameter should be the same for each application.

Implementation

Each round trip application creates an MQTT client. The client publishes to the topic of the ID above it. So the
application with ID = 1 publishes to the application with ID = 2 and so on. The client reads from its topic. These
topics have the name “roundtrip” with the ID behind it. So the topic with ID = 1 is “roundtrip1”.

The application with ID = 1 initiates the round trip. Therefore, it starts with publishing to topic “roundtrip2”. The
application with ID = 2 then receives the message of the application with ID = 1 and sends a message to the next
application. The last application always publishes to the first making the round trip complete.

Read

The read implementation continuously executes the try_consume_message function to get the latest message of
its own topic. try_consume_message tries to read the next message from the queue without blocking. When a
message is received, the application uses publish to publish to the next application.

Callback

The callback implementation uses a callback function for receiving the latest message. This callback sets a message
flag which will trigger the publishing of a message to the next application.

Flood

This chapter contains information about the flood application. This application can be found in the directory: src/
demonstrators/ComparedToOtherProtocols/MQTT/RoundTrip/C++/Flood.

50 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

Building

First, go to the flood C++ directory (see Flood).

Execute the following commands:

mkdir build && cd build
cmake ..
make

These commands will compile the source code and generate an executable.

Execution

The application takes several parameters for its execution. It can be executed using the following command in the
build folder:

./Flood <device ID> <number of devices> <total messages> <QoS>

A more thorough description of the parameters can be found when executing the application without parameters or
can be read from the source of main.cpp. The following example starts 4 nodes for the flood using MQTT QoS level
1. The slaves of the round trip are started in the background. There are a total of 1000 messages sent by the master.
For a flood to be finished, these messages should all be correctly received by the master.

./Flood 2 4 1000 1 & ./Flood 3 4 1000 1 & ./Flood 4 4 1000 1 &

./Flood 1 4 1000 1

Note: Execution of the program

The flood is initiated by the device with <device ID> = 1. Therefore, <device ID> = 1 should always be started last.

The devices added with <device ID> must be an increment of the previous one. This function does not dynamically
search for the next device! So if there are four devices, device 2 should be started first, then 3, after that 4 and as last
device 1 should be started as 1 should always be started last.

The <total messages> parameter should be the same for each application.

Implementation

Each flood application creates an MQTT client. The client publishes to the topic of the ID above it. So the application
with ID = 1 publishes to the application with ID = 2 and so on. The client reads from its topic. These topics have the
name “flood” with the ID behind it. So the topic with ID = 1 is “flood1”.

The application with ID = 1 initiates the flood. It does this by publishing to topic “flood2”. The application with ID
= 2 then receives the messages of the application with ID = 1 and sends a message to the next application for each
message received.

The slaves (ID not equal to 1) just send a message to the next device in the flood loop as soon as they receive a message.
The master (ID = 1) sends messages as fast as possible to the next device in the flood loop.

If the master sends a message, a value is incremented to keep track of the number of messages sent. The master
keeps sending messages until this value is equal to the <total messages> parameter that the user inserted when
executing the application. If the master receives a message, another value is incremented. In the end, this value should
also be the same as the <total messages> parameter that the user inserted when executing the application.

1.2. Main Table of Content 51

DDS-Demonstrators, Release TechPush

Slave

The slave implementation uses a callback which sets a message flag on receiving a message. these messages are
received on its topic. When a message is received, the application uses publish() for publishing a message to the
next application.

Master

The master implementation uses a callback which sets a message flag on receiving a message. these messages are
received on its topic. Afterwards, it writes a new message to the next device in the flood loop.

Therefore, in the beginning, the master only writes to the next devices. Afterwards, the loop will eventually be in a
stable condition where the master reads a message first and writes a new message afterwards. In the end, the master
won’t send messages anymore, and will only read the last messages that exist in the flood loop.

MQTT-IPC

run the run.sh file and it will set up a local round trip

requirements: mqtt must be installed then this script can run locally

MQTT-ISC

Running the run.sh shel script wil setup a roundtrip over four different systems.

The following components must be in place in order for it to work: three systems(raspberries) with python paho
mqtt installed. one system with mosquitto and python paho mqtt installed The ips of the external systems must be
192.168.0.200, 192.168.0.201, 192.168.0.203 run.sh must be run on a system with ip 192.168.0.202

ZMQ-RoundTrip

In the sub files programs are contained to run the round trips. Each file contains instructions to run them.

ZMQ Round trip in C++

authors Sam Laan

date Jun 2020

Description

The round trip C++ directory can be found in src/demonstrators/ComparedToOtherProtocols/ZMQ/
RoundTrip/C++/. This directory contains a folder for the round trip implementation as well as the flood imple-
mentation.

This page contains information about the round trip and flood applications made in C++ using ZMQ.

52 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

Dependencies

The dependencies necessary for successful compilation of the round trip / flood application in C++ are the following:

• CMake

• C++17 compiler (GCC 7+ for example)

• cppzmq library (installation: ZMQ C++)

Round trip

This chapter contains information about the round trip application. This application can be found in the directory:
src/demonstrators/ComparedToOtherProtocols/ZMQ/RoundTrip/C++/RoundTrip.

Configuring

The CMake file can be found in the source directory of the round trip. This file can be configured to either build the
implementation using polling for the round trip or the one using a blocking receive method. To build the blocking
receive implementation make the following change to the Cmake file.

set(PROJECT roundtrip_read)

The line to change can be found at the top of the Cmake file. To build the polling implementation change the following
line in the Cmake file to:

set(PROJECT roundtrip_polling)

Building

To build the application run the following commands in the round trip implementation source directory.

mkdir build && cd build
cmake ..
make

These commands will compile the source code and generate an executable.

Execution

The application takes several parameters for its execution. It can be executed using the following command in the
build folder:

./RoundTrip <device ID> <Total devices> <Round trips> <Pub address> <Sub address>

A more thorough description of the parameters can be found when executing the application without parameters or
can be read from the source of main.cpp. The following example starts 4 devices for the round trip using ZMQ. The
slaves of the round trip are started in the background. Only the master is started in the foreground in this example.
Each device pings a total of 1000 times. Therefore, there are 1000 round trips.

1.2. Main Table of Content 53

DDS-Demonstrators, Release TechPush

./RoundTrip 4 4 1000 tcp://127.0.0.1:5554 tcp://127.0.0.1:5553 &

./RoundTrip 3 4 1000 tcp://127.0.0.1:5553 tcp://127.0.0.1:5552 &

./RoundTrip 2 4 1000 tcp://127.0.0.1:5552 tcp://127.0.0.1:5551 &

./RoundTrip 1 4 1000 tcp://127.0.0.1:5551 tcp://127.0.0.1:5554

Note: Execution of the program

The round trip is initiated by the device with <device ID> = 1. Therefore, <device ID> = 1 should always be started
last.

The devices added with <device ID> must be an increment of the previous one. This function does not dynamically
search for the next device! So if there are four devices, device 2 should be started first, then 3 after that 4 and as last
device 1 should be started as 1 should always be started last.

The <Pub address> parameter contains the address to which the device publishes. The <Sub address> parameter
contains the address to which the device subscribes. Each device should subscribe to the subsequent device. This
means that device 2 should subscribe to the publish address of device 1. Device 1 should subscribe to the publish
address of the last device to complete the circle.

The <Round trips> and <Total devices> parameter should be the same for each application.

Implementation

Each round trip application creates a publish and a subscribe ZMQ socket. The devices publish on their pub socket
while another device subscribes to these messages by connecting to the publish socket and subscribing to the topic. So
the application with ID = 1 publishes to the application with ID = 2 and so on. The client reads from its topic. These
topics have the name “roundtrip” with the ID behind it. So the topic with ID = 1 is “roundtrip1”.

The application with ID = 1 initiates the round trip. Therefore, it starts with publishing to topic “roundtrip2”. The
application with ID = 2 then receives the message of the application with ID = 1 and sends a message to the next
application. The last application always publishes to the first, making the round trip complete.

Read

The read implementation continuously executes the try_consume_message function to get the latest message
of its topic. try_consume_message tries to read the next message from the queue without blocking. When a
message is received, the application uses publish to publish to the next application.

Callback

The callback implementation uses a callback function for receiving the latest message. This callback sets a message
flag which will trigger the publishing of a message to the next application.

Flood

This chapter contains information about the flood application. This application can be found in the directory: src/
demonstrators/ComparedToOtherProtocols/ZMQ/RoundTrip/C++/Flood.

54 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

Building

First, go to the flood C++ directory (see Flood).

Execute the following commands:

mkdir build && cd build
cmake ..
make

These commands will compile the source code and generate an executable.

Execution

The application takes several parameters for its execution. It can be executed using the following command in the
build folder:

./Flood <device ID> <Total devices> <Messages> <Pub address> <Sub address>

A more thorough description of the parameters can be found when executing the application without parameters or
can be read from the source of main.cpp. The following example starts 4 devices for the flood using ZMQ. The slaves
of the flood are started in the background. There are a total of 1000 messages sent by the master. For a flood to be
finished, these messages should all be correctly received by the master.

./Flood 4 4 1000 tcp://127.0.0.1:5554 tcp://127.0.0.1:5553 &

./Flood 3 4 1000 tcp://127.0.0.1:5553 tcp://127.0.0.1:5552 &

./Flood 2 4 1000 tcp://127.0.0.1:5552 tcp://127.0.0.1:5551 &

./Flood 1 4 1000 tcp://127.0.0.1:5551 tcp://127.0.0.1:5554

Note: Execution of the program

The flood is initiated by the device with <device ID> = 1. Therefore, <device ID> = 1 should always be started last.

The devices added with <device ID> must be an increment of the previous one. This function does not dynamically
search for the next device! So if there are four devices, device 2 should be started first, then 3, after that 4 and as last
device 1 should be started as 1 should always be started last.

The <Pub address> parameter contains the address to which the device publishes. The <Sub address> parameter
contains the address to which the device subscribes. Each device should subscribe to the subsequent device. This
means that device 2 should subscribe to the publish address of device 1. Device 1 should subscribe to the publish
address of the last device to complete the circle.

The <Messages> and <Total devices> parameter should be the same for each application.

Implementation

The flood application creates a publish and a subscribe ZMQ socket. The devices publish their pub socket while
another device subscribes to these messages by connecting to the publish socket and subscribing to the topic. So the
application with ID = 1 publishes to the application with ID = 2 and so on. The client reads from its topic. These
topics have the name “flood” with the ID behind it. So the topic with ID = 1 is “flood1”.

The application with ID = 1 initiates the flood. It does this by publishing to topic “flood2”. The application with ID
= 2 then receives the messages of the application with ID = 1 and sends a message to the next application for each
message received.

1.2. Main Table of Content 55

DDS-Demonstrators, Release TechPush

The slaves (ID not equal to 1) just send a message to the next device in the flood loop as soon as they receive a message.
The master (ID = 1) sends messages as fast as possible to the next device in the flood loop.

If the master sends a message, a value is incremented to keep track of the number of messages sent. The master
keeps sending messages until this value is equal to the <total messages> parameter that the user inserted when
executing the application. If the master receives a message, another value is incremented. In the end, this value should
also be the same as the <total messages> parameter that the user inserted when executing the application.

Slave

The slave implementation uses a callback which sets a message flag on receiving a message. these messages are
received on its topic. When a message is received, the application uses publish() for publishing a message to the
next application.

Master

The master implementation uses a callback which sets a message flag on receiving a message. these messages are
received on its topic. Afterwards, it writes a new message to the next device in the flood loop.

Therefore, in the beginning, the master only writes to the next devices. Afterwards, the loop will eventually be in a
stable condition where the master reads a message first and writes a new message afterwards. In the end, the master
won’t send messages anymore, and will only read the last messages that exist in the flood loop.

Findings Round-trip C++

The Round-trip applications for ZMQ and MQTT write their results to a CSV file called roundtrip.csv. This CSV file
can be used to process the results of experiments done using the application. There were already two experiments done
concerning inter-process communication(IPC) and inter-device communication(IDC). The results of these experiments
are described below.

IPC experiment

The IPC experiment was conducted on the Lenovo Thinkpad T470 20HD000MUK. Three nodes were used to conduct
the experiment. The following graph shows the results of the experiment for each protocol for a different number of
messages. This was done to put them in direct comparison. No quality of service policies were used, for MQTT this
means that level 0 was used.

56 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

The value on the X-axis is time in microseconds. The values on the Y-axis is the protocol and the number of messages.
MQTT gets outperformed by each other, by a factor of about 5 with DDS and a factor of 3 compared to ZMQ. Besides
this MQTT also suffered from package loss when sending 100000 messages leaving the roundtrip unable to finish.

IDC experiment

The following setup was used for the IDC experiment:

Three nodes were used to conduct the experiment. The following graph shows the results of the experiment for each
protocol for a different number of messages. This was done to put them in direct comparison. No quality of standard
policies were used, for MQTT this means that level 0 was used.

1.2. Main Table of Content 57

DDS-Demonstrators, Release TechPush

The value on the X-axis is time in microseconds. The values on the Y-axis is the protocol and the number of messages.
The graph shows that the amount of messages has a minimal amount of influence on performance for each protocol.
Meaning each protocol is stable in the speed of sending and receiving messages. However, MQTT is the least stable
of the protocols when looking at the graph. Besides this, MQTT gets outperformed by the same factors as the IPC
experiment. Again MQTT suffered from package loss at 100000 messages leaving the application unable to finish.

Findings Flood C++

The Flood applications write their results to a CSV file called flood.csv. This CSV file can be used to process the
results of experiments done using the application. There were already two experiments done concerning inter-process
communication(IPC) and inter-device communication(IDC). The results of these experiments are described below.

IPC experiment

The IPC experiment was conducted on the Lenovo Thinkpad T470 20HD000MUK. Three nodes were used to conduct
the experiment. The following graph shows the results of the experiment for each protocol for a different number of
messages. This was done to put them in direct comparison. No quality of standard policies were used, for MQTT this
means that level 0 was used.

The value on the X-axis is time in microseconds. The values on the Y-axis is the protocol and the number of messages.
MQTT would get a buffer overflow when sending messages in the flood experiment. Therefore no results could be
extracted. The application would work to a maximum of about 150 to 200 messages. A greater number will trigger the
overflow error and crash the application. For the other protocols it can be seen that ZMQ outperforms DDS. While in
the round-trip it was the other way around. This probably has something to do with the fack that ZMQ uses a message
queue while DDS uses a different mechanism. The message queue principle is faster for the flood case while in the
round-trip it’s the other way around.

IDC experiment

The following setup was used for the IDC experiment:

58 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

Three nodes were used to conduct the experiment. The following graph shows the results of the experiment for each
protocol for a different number of messages. This was done to put them in direct comparison. No quality of service
policies were used, for MQTT this means that level 0 was used.

The value on the X-axis is time in microseconds. The values on the Y-axis is the protocol and the number of messages.
MQTT would get a buffer overflow when sending messages in the flood experiment. Therefore no results could be
extracted. The application would work to a maximum of about 150 to 200 messages. A greater number will trigger
the overflow error and crash the application. The graph shows that MQTT is far slower than DDS and ZMQ. The
maximum time of a message was 186 microseconds while DDS has a maximum time of 100 microseconds and ZMQ
of 41. For some amount of messages no results could be gathered. This is due to package loss leaving the application
unable to finish.

Cyclone DDS Python binding

This page describes the Cyclone DDS Python binding, and gives a tutorial of its usage. There are currently different
versions available, but only the latest version is for production, the rest is temporarily saved for development purposes.

Content:

Version1

Warning: This version is deprecated. It describes an older version of the library, which is no longer in use. This
page is only kept for development purposes, and will be removed shortly.

1.2. Main Table of Content 59

DDS-Demonstrators, Release TechPush

Note: The code for this version is located in /poc1

Description

Demonstrator for the new Python binding. Main features are (once finsihed): - Full feature set (all functionalities of the
underlying DDS library available) - Able to handle idl files properly (the atolab implementation converts everything
to a string, and disregards idl files). - Pythonic implementation, to ensure the easy of use for developers.

Currently there is a minimal version available. It is possible to send and receive basic messages, using the json method.
IDL support will be added in the near future.

Assumptions

The following library files need to be in the stated directory:

• libddsc.so at “/usr/local/lib”

• libddstubs.so at “/usr/local/lib”

The latter is the one coming from the atolab implementation, and is only needed temporarily. It contains the topic
descriptor for the json topic. Once IDL support is added it will be removed.

Design

The UML of the implementation:

60 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

Examples

The files sender.py and receiver.py demonstrate the usage of the library. Sender publishes a simple message to the
topic “testtopic” every 2 seconds, and logs it to the console.

Receiver reads the same topic, once every 3 seconds, and logs the list of read messages to the console. (It always reads
a list of messages, so reading more than one at a time is not a problem.)

The files can be called from the Examples folder as follows:

python3 sender.py

and

python3 receiver.py

1.2. Main Table of Content 61

DDS-Demonstrators, Release TechPush

Version2

Description

This page describes the Cyclone DDS Python binding that can be found at src/demonstrators/PythonBinding/poc2.
This package is wrapper on Cyclone’s C library, with the aim of providing access to all functionalities, with a pythonic
API. It was designed to fulfill a number of requirements:

• Completeness: All the functionalities that are implemented within Cyclone DDS should be available
from the Python version.

• DDS wire-standard: The current version developed by atolab uses pre-defined topics, by converting
everything to a string, regardless of the actula data type of the field. this makes it impossible to
communicate with different implementations. This library should obey the DDS wire-standard.

• Pythonic: The implementation should be done in a Pythonic way, and it should feel natural for the
Python developer.

Warning: The library is not yet fully implemented. It does not support sequence fields, and nested topic types,
and it is not possible to specify quality of service options. These will be implemented soon.

The role of IDL

In order to understand how the Python binding deals with defining and registering topic types, we give a brief overview
of how this is traditionally (both in the C version, as well as in the atolab Python version) approached.

DDS is a topic based protocol. A topic is an abstract entity, that assigns both semantic and syntactic meaning to the
bytes that are being sent over the network. It ensures that the receiver can decode the message properly, and also
provides a mean of error checking for the sender. There are however a number of other important attributes of a topic
other than its byte layout. For example specifying quality of service options, and setting different configuration flags
are topic level operations, that need to be stored in the global data space, alongside with the topic definition. There is
also an important distinction between keyed and keyless topics: Having no key specified makes all the instances of a
topic effectively equal (meaning there is no distinction possible between the instances). So when a field is set to be a
topic key, this information needs to be known by the golbal data space, that stores the messages and manages queues.

To be able to do all this, it is not sufficent to simply define the structure (in the C sense) of the desired topic, but
it also becomes necessary to provide some sort of configuration object, that describes the aforementioned attributes.
This configuration object (which is not really an object itself, but a C-style structure) is called the topic descriptor.
To make life easier for the developer, Cyclone DDS lets the user define the topic structures in a tiny domain specific
language, called IDL. A special parser reads this definition, and generates the corresponding C data types for both the
topic structure and the topic descriptor. These generated C files can then be used to implement the program.

How to be Pythonic?

This approach with the IDL file works alright when working with C, or any other compiled language, because the use
of an additional static tool to get your topic generated is not of huge inconvenience. When using a script language
like Python, it becomes much more of a problem. It suddenly becomes a lot more annoying to let a third-party tool
generate part of your code every time you change something. So it is necessary to find a solution that lets the user
circumvent the use of IDL definitions.

In the atolab Python library, they decided to get rid of the possibility of defining your own topic altogether. Instead,
they limited the user to a single topic (for which IDL is still used by the way), and every possible value that can be sent
is reduced to this single topic type. It seems ok on the surface, as there is no need to deal with the static definition of

62 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

topic types, but there are two major problems with this approach. Firstly, to ensure that everything can be reduced to a
given topic, it is chosen to have a string field that esentially contains all the data. Every time you send something over
the network, the library converts the data into a json string. This is of course extremely inefficient. Not only does it cost
time and computational resources to convert every single sample into a string, but it also increases the network load
by a lot. For example, if you want to send the number 3658, it will not be sent as a singe integer, but as four different
characters. Another, more obvious problem with this approach is that it entirely disobeys the DDS wire-standard,
meaning it is only able to communicate with another atolab client, but not with a different DDS implementation.

At the start of the project there were two possible options for tackling this issue: We can either implement our own
IDL parser, that outputs Python run-time objects instead of .c/.h files, or that we leave out the static definition entirely,
and do all things in Python. After discussing this issue with the product owner [Albert Mietus] on several occasions,
we settled on the second approach, because of being more modern and Pythonic.

Design

Domain

Participants in DDS are all part of a domain. A domain roughly means that every endpoint that is on domain x can
only communicate with other endpoints on domain x, and not with others. Domains are to separate different networks
of devices from eachother. When creating an application, first you must specify the domain of it, with a domain ID.

domain = Domain(1)

Topic

The goal is to define topic structures as ordinary Python classes. In Python, everything is dynamically typed, which
means that when a class is defined, it is not clear what the types of its attributes are going to be (and those types do
also not necessarily remain the same throughout the execution of the program). This behaviour makes it impossible
to generate the proper topic descriptor when creating a new topic. To make it possible we need to introduce a way of
fixing the type of the attributes when defining a class. One way of doing this is having a static dictionary, or list of
tuples that maps each attrinute to their correesponding type. Then we would get something like this:

class Data:
fields = [

"id": int,
"name": str

]

def __init__(self):
self.id = None
self.name = None

It describes the topic _Data_, that has two attributes, id and name. This is however not the most elegant solution, as
the user has to add a class level attribute, fields, which makes the code less readable, and annoying to write it out if
there are many attributes. It is also inconvenient having to initialize them, as their value will be determined run-time.
(If you could initialize any of your fields as a contant, it would make no sense to send it over the network, as you could
initialize it at the other side to the same constant as well.) Since everything is an object in Python, even types, we
chose for a solution that mitigates both issues, and feels a lot more Pythonic. You would then define the class above
like this:

class Data:
def __init__(self):

(continues on next page)

1.2. Main Table of Content 63

DDS-Demonstrators, Release TechPush

(continued from previous page)

self.id = int
self.name = str

To turn this into a proper topic, the C struct of this class, and its topic descriptor needs to be generated and passed to
DDS. This work is done in the topic class decorator.

Note: The _topic_ decorater makes run-time changes on the class definition, ads new attributes to it, and most
importantly replaces the __init__ function. It is important that the original __init__ does not have any arguments
other than self, and optionally **kwargs.

As an extra argument, the decorator also takes the domain on which this topic will run.

domain = Domain(1) # '1' is the domain id.

@topic(domain)
class Data:

def __init__(self):
self.id = int
self.name = str

The topic “Data” is now properly registered by Cyclone, and instances of it can now be sent over the network. It can
be instantiated by supplying it with keyword argumets for the attributes.

data = Data(name="Kevin", id=27)

It is not necessary to initialize all of the fields. There is a default value associated with each type. The uninitialized
fields take the default value.

>>> data = Data(name="Jan")
>>> data.id
>>> 0

It is also possible to be more specific with typing. There are a number of C types included in the library, such as int16,
int32, uint16 etc.

Sending and receiving

You can publish using a Writer object. The constructor of writer takes a topic that it can write to, and can be used by
calling its __call__ method with the data sample. Below is a minimalistic example of a program that writes a single
data point:

domain = Domain(1) # '1' is the domain id.

@topic(domain)
class Data:

def __init__(self):
self.id = int
self.name = str

w = Writer(Data) # Creating writer object.

sample = Data(name="Jaap", id=12)
w(sample) # Writing the sample data

64 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

Reading from a topic can be done with the Reader class. Similarily to Writer, when creating a Reader you need to
pass it the topic. Additionally you also need to specify the buffer size. It is the number of elements that can be stored
unread. So it is the size of the queue for unread messages. A call to Reader.__call__ returns a list of data points,
flushing the buffer. Here is an example of the “other half” of our program:

domain = Domain(1) # '1' is the domain id.

@topic(domain)
class Data:

def __init__(self):
self.id = int
self.name = str

r = Reader(Data, 10) # Creating reader object.
samples = r() # samples now contains a (possibly empty) list of Data
→˓objects.

1.2.5 Team pages

author Albert

date Dec 2019

Concept

Each team (possible of 1 person) gets an own directory (a subdir of this one), to place notes, store know-how, etc.
That does not imply they are the only ones who may change those articles; it just a convenient place to start.

So whenever you find out something, that may be interesting for your team, or a future team: write a note, an article,
and place it in your team-section. Or update an existing one (even of another team). In all cases, add you name as
author or section-author and update the date

This part consists of a lot of ‘notes’. They may be new, maintained, or outdated. Moreover, gen-
eral quality rules are lowered. This is on purpose: it is better to have and share a brainwave, then
to have it forgotten. As long a the reader knows it status: by this intro, everybody should know!

Talk like pi

Welcome to the ‘talk like pi’ team page. To start right away
i would recommend going through the setup chapter first so
that all requirements are in place to run everything. After-
wards go to the running part of each of the protocol/library
chapters and it will show how to run the programs.

contents

setup

To make the round trip and bandwidth applications run some sort of setup
is needed. There are different ways to make this setup like using virtual

1.2. Main Table of Content 65

DDS-Demonstrators, Release TechPush

machines. Because there are four raspberries on hand and its more fun
they are used to

The image above shows how i do it. four raspberries connected to a
router. The DHCP setting can easily be adjusted to give the raspberries
static IP’s. The following ip addresses are set for the raspberries:

• 192.168.0.200

• 192.168.0.201

• 192.168.0.202

• 192.168.0.203

The raspberry i work from is 202, theres no real reason for it just that its the raspberry that i used first. However it is
important to also work from this pi, because the shell scripts that have been made assume this setup and that the pi

66 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

from which it is started has ip 202. For these scripts to work each of the raspberries needs a ssh-key without password
from the 202 raspberry. Though this is only neccessary to use the isc programs.

It is also important to have DDS, MQTT and ZMQ installed on all the raspberries, the respository onlye needs to be
cloned to one of them. How to isntall all three libraries is shown on the main page of this documentation under IPSC
Inter Process & System Communications.

MQTT

MQTT(Message Queuing Telemetry Transport) uses a pub-sub method to get messages from client to client, more on
that in the chapter MQTT workings.

Running MQTT

before running anything the following ASSUMPTIONS are made here:

• MQTT is installed as per the IPSC manual

• you have four raspberries configured as per the setup chapter

• the repository has been downloaded

Now setting up the first MQTT roundtrip is very easy:

sh <techpush-sourcedir>/demonstrators/ComparedToOtherProtocols/MQTT/RoundTrip/Python/
→˓ipc/run.sh

now the local roundtrip is being setup up and run. Be sure to run cleanup.sh after cancelling the script. note: Some of
the shell scripts automatically run cleanup.sh when ctrl-c is pressed

running the other MQTT setups is just as easy. For example the isc version of the roundtrpp:

sh <techpush-sourcedir>/demonstrators/ComparedToOtherProtocols/MQTT/RoundTrip/Python/
→˓isc/run.sh

or for both the bandwith programs:

sh <techpush-sourcedir>/demonstrators/ComparedToOtherProtocols/MQTT/Bandwidth/Python/
→˓ipc/run.sh
sh <techpush-sourcedir>/demonstrators/ComparedToOtherProtocols/MQTT/Bandwidth/Python/
→˓isc/run.sh

The MQTT.py program takes command line inputs in the following order:

Receiving topic Sending topic MQTT broker IP a 1 or 0 for being a master or hub respectively QOS quality of service

so for example:

python3 MQTT.py ReceivingTopic SendingTopic 192.168.0.202 1 0

In the example a master(1) is started which sends to SendTopic, receives on ReceiveTopic, works with a broker on
192.168.0.202 and uses a QOS of 0.

MQTT workings

MQTT works by sending a message to a central broker which then distributes the message to everybody thats listening
in. It looks something like:

1.2. Main Table of Content 67

DDS-Demonstrators, Release TechPush

In the context of the roundtrip this looks like:

68 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

1.2. Main Table of Content 69

DDS-Demonstrators, Release TechPush

In the context of a roundtrip this method might seem a bit inefficients as every message has to go throught the broker.
Also there is a sinle point of failure. However if the message needs to go to multiple hubs it costs almost nothing extra
for the whole system. Speed should remain the same. This can be useful if for example there is a system where one
sensor input needs to go to several different actuators. There are many more downsides and upsides however i will not
discuss them here, there are many websites that discuss them like this one: http://portals.omg.org/dds/features-benefits/

ZMQ: ZeroMQ

Running ZMQ

before running anything the following ASSUMPTIONS are made here:

• ZMQ is installed as per the IPSC manual

• you have four raspberries configured as per the setup chapter

• the repository has been downloaded

<ZMQ roundtrip explanation of how to use them>

For ZMQ the round trip is not as nicely worked out as for MQTT, however the bandwidth programs are easy to start:

sh <techpush-sourcedir>/demonstrators/ComparedToOtherProtocols/ZMQ/Bandwidth/Python/
→˓isc/run.sh
sh <techpush-sourcedir>/demonstrators/ComparedToOtherProtocols/ZMQ/Bandwidth/Python/
→˓ipc/run.sh

About ZMQ

ZMQ is a very versatile library that makes implementing different ways of sending messages possible with one library
and still tries to keep it simple. There are four main ways of communicating messages:

• Request-reply: client sends a request to a service and gets information back.

• Publish-subscribe : client publishes message to several other clients whom are listening

• Pipeline

• Exclusive pair

These methods of handling messages can be connected in the following ways:

• PUB and SUB

• REQ and REP

• REQ and ROUTER (take care, REQ inserts an extra null frame)

• DEALER and REP (take care, REP assumes a null frame)

• DEALER and ROUTER

• DEALER and DEALER

• ROUTER and ROUTER

• PUSH and PULL

• PAIR and PAIR

70 Chapter 1. Measure & Blog

http://portals.omg.org/dds/features-benefits/

DDS-Demonstrators, Release TechPush

DDS

DDS(Dynamic Data Distribution)

Running DDS

Like for MQTT and ZMQ, DDS also needs some preparations to use:

• ZMQ is installed as per the IPSC manual

• you have four raspberries configured as per the setup chapter

• the repository has been downloaded

It is possible to make a round trip using the python scripts. This can be done like this:

python3 <techpush-sourcedir>/demonstrators/RoundTrip/Python/DDShub.py Master_Out hub1
python3 <techpush-sourcedir>/demonstrators/RoundTrip/Python/DDShub.py hub1 hub2
python3 <techpush-sourcedir>/demonstrators/RoundTrip/Python/DDShub.py hub2 hub3
python3 <techpush-sourcedir>/demonstrators/RoundTrip/Python/DDShub.py hub3 Master_in
python3 <techpush-sourcedir>/demonstrators/RoundTrip/Python/RoundTrip.py

These commands can be run on the same or seperate systems and they still work. DDS will work out how to connect
them, of course the systems do have to be on the same network.

In short what happens here is that first three DDS-hubs are started. the first argument given is the topic the hub is
listening to for incoming messages, the second input is the topic to which the received message will be sent. The
master functions basicly the same way as the hub with only two differences: it adds 1 to the message each time it
passes and some time after it started it sends the first message.

RoundTrip

To test the different ways of communication, what is called a roundtrip is used. In a round trip four different processes
or systems send messages to one another. In the round trip there is one master and three hubs it looks a little like this:

In a time diagram it looks a little like this:

1.2. Main Table of Content 71

DDS-Demonstrators, Release TechPush

In the example above the message makes three roundtrips. Of course in practice this will be thousands of round trips
to accurately determine the amount of time it takes to go around. As shown every time the message passes the master
its contents is increased by one. This way the master can calculate how many times a message passes every second or
how long it takes for the message to take a round trip. Another way of measuring the methods of communication is
sending a bunch of messages and see how long it takes for them to come back. That looks something like:

72 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

Both of these tests are interesting as the first test migth give an idea whether the communication is fast enough for
example in a controlled system. The second is interesting as in practice there may be many systems communication
many different things and this simulates that situation.

Bandwidth

Sending a bunch of messages and time how long it takes for them to come back

similar to the Roundtrip there is a different way of testing the speed of a connection. This is also results in a time spent
per message. In this method the master sends a whole bunch of messages and then waits until they all come back.
Dividing the time it took of the messages to come back by the amount of messages also gives an amount of time.

Tips and tricks

1.2. Main Table of Content 73

DDS-Demonstrators, Release TechPush

Sphinx continuous build

Instead of writing in sphinx pressing build to see if it comes out correctly its much more efficient to make a script that
continuously builds so you just have too push refresh in your browser.

in windows this can be done with:

:loop

DEL /q <buildDir>*

FOR /L %%A IN (1,1,20) DO (
sphinx-build -b html <techpushDir>\mess.techpush-training\docs\doc <buildDir>
)

goto loop

This will keep building sphinx forever and once every 20 builds it does a clean build.

Use shell scripts

They might not be the most intuitive thing to work with but shell scripts are very usefull. Take for example the shell
script used for the isc version of ZMQ bandwidth:

BASEPORT="888"
HUB="0"
MASTER="1"

BASESEND1="tcp://"
BASESEND2=":8881"
RECEIVEURL="tcp://*:8881"

Pi0="192.168.0.200"
Pi1="192.168.0.201"
Pi2="192.168.0.202"
Pi3="192.168.0.203"

copy MQTT.py the raspberries
scp ZMQbisc.py pi@${Pi0}:~/ZMQbisc.py
scp ZMQbisc.py pi@${Pi1}:~/ZMQbisc.py
scp ZMQbisc.py pi@${Pi3}:~/ZMQbisc.py

ssh pi@${Pi0} 'mkdir /tmp/feeds'
ssh pi@${Pi1} 'mkdir /tmp/feeds'
ssh pi@${Pi3} 'mkdir /tmp/feeds'

SOCKETLOCATION="ipc:///tmp/feeds"

mkdir /tmp/feeds

trap ctrl_c INT

ctrl_c() {
echo "knock knock, cleaning lady"

(continues on next page)

74 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

(continued from previous page)

sh cleanup.sh
}

ssh pi@${Pi0} python3 ~/ZMQbisc.py ${RECEIVEURL} ${BASESEND1}${Pi1}${BASESEND2} 0 &
sleep 1
ssh pi@${Pi1} python3 ~/ZMQbisc.py ${RECEIVEURL} ${BASESEND1}${Pi3}${BASESEND2} 0 &
sleep 1
ssh pi@${Pi3} python3 ~/ZMQbisc.py ${RECEIVEURL} ${BASESEND1}${Pi2}${BASESEND2} 0 &

python3 ZMQbisc.py ${RECEIVEURL} ${BASESEND1}${Pi0}${BASESEND2} 1

sh cleanup.sh

This script makes it easy to start the round trip even though it has scripts running on four different raspberry pi’s. Also
the cleanup script makes sure that everything the shell script makes is removed when it stops. This makes sure that
there is no python program running in the background messing things up. Doing this all manually might not seem like
much work but doing it a hundred times on one day is.

Conclusion: USE SHELL SCRIPTS

sprints

sprint1

sprint1 results

In this sprint the amount it takes for a message to make a round trip has been measured. To understand
what the times mean in the tables, see the theory about roundtrip in RoundTrip The measurements using
the round trip programs have given the following results:

IPC measurements
Language: python3
protocol ms/msg
MQTT 4.694029412
ZMQ 0.540805556
DDS under construction

ms/msg represents the amount of time it takes for the message to make a round trip.

ISC measurements
Language: python3
protocol ms/msg
MQTT 6.052571429
ZMQ 1.617088235
DDS under construction

sprint2

The first sprint has passed its time for the second sprint.

1.2. Main Table of Content 75

DDS-Demonstrators, Release TechPush

sprint results 1

Using the method of sending a whole bunch of message at the same time and timing how long it takes
before they get back the following milliseconds per message have been measured using the protocols
isc capabilities(dont understand what is actually being measured? look at the bandwidth chapter in
RoundTrip).

ISC measurements bandwidth
Language: python3
protocol ms/msg
MQTT 6.5
ZMQ 7.3
DDS under construction

If the processes communicate in an interprocess way the following times are measured:

IPC measurements bandwidth
Language: python3
protocol ms/msg
MQTT 9.5
ZMQ 0.4
DDS under construction

sprint features

Total amount of feature points to spend: 40

Below all options with their tasks have been laid out that can be taken up for this sprint.

sprint options:

• Compare 10 ZMQ variations in python [15 fp] (hp)

– research ten possible configurations for ZMQ [2 fp]

– first ping pong [2 fp]

– first round trip [2 fp]

– second ping pong [1 fp]

– second round trip [1 fp]

– next added ping pong [0.5 fp]

– next added roud trip [0.5 fp]

• Compare 3 different MQTT setups in python [2 fp] (hp)

– research three possible MQTT setups [1 fp]

– measuring round trip time [1 fp]

• Change DDS to cyclonedds from eclipse and timing ISC [2 fp] (hp)

– install cyclonedds [1 fp]

– test cyclonedds [1 fp]

• Round trip time MQTT in C++ IPC and ISC [4 fp]

76 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

– install library [1 fp]

– working pingpong [2 fp]

– round trip time [1 fp] This ^ is the same for each of the following round trip time

• Round trip time DDS in C++ IPC and ISC [4 fp]

• Round trip time ZMQ in C++ IPC and ISC [4 fp]

• Round trip time MQTT in java IPC and ISC [4 fp]

• Round trip time DDS in java IPC and ISC [4 fp]

• Round trip time ZMQ in java IPC and ISC [4 fp]

• bandwidth measurement 2 fp per language and protocol [18 fp]

– write program that measures bandwidth [2 fp]

• Documentation for sprint 1 [4 fp]

– planned features and finished futures [2 fp]

– sprint results in sphinx table format [2 fp]

• Documentation for sprint 2 [8 fp]

– sprint results [2 fp]

– software installation and execution [4 fp]

– ZMQ, MQTT and DDS workings [2 fp]

• Pathways setup and protocol integration [24 fp]

chosen sprint goals:

• Compare 10 ZMQ variations in python [15 fp] (hp)

• Compare 3 different MQTT setups in python [2 fp] (hp)

• Change DDS to cyclonedds from eclipse and timing ISC [2 fp] (hp)

• Documentation for sprint 2 [8 fp] (hp)

• Documentation for sprint 1 [4 fp] (mp)

• banddiwdth measures for python ZMQ, MQTT and DDS [6 fp] (mp)

• Round trip time DDS in C++ IPC and ISC [4 fp] (lp)

• Round trip time ZMQ in C++ IPC and ISC [4 fp] (lp)

1.2. Main Table of Content 77

DDS-Demonstrators, Release TechPush

Team Hurricane

Setup Guide for CycloneDDS

Geting Started

The following are required before building Cyclone DDS:

• C Compiler (i.e. GCC).

• GIT.

• CMAKE (3.7 or later).

• OpenSSL (1.1 or later)

• Java JDK (8 or later).

• Apache Maven (3.5 or later).

CycloneDDS Installation

To download CycloneDDS on Linux/Raspberry Pi:

$ git clone https://github.com/eclipse-cyclonedds/cyclonedds.git
$ cd cyclonedds
$ mkdir build

To build and install CycloneDDS on Linux/Raspberry Pi:

$ cd build
$ cmake -DCMAKE_INSTALL_PREFIX=<install-location> ..
$ cmake --build .
$ cmake --build . --target install

78 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

Note: The two cmake --build commands might require being executed with sudo depending on the
<install-location>.

Warning: Apache Maven requires internet access to update the list of artifacts. This will be required when
executing cmake --build .. Since the Raspberry Pi is not allowed to connect to the Sogeti network this was
achieved using a mobile hotspot.

Testing CycloneDDS Installation

In order to test the CycloneDDS installation on that particular device we are going to run the Hello World example that
is provided. Open two terminals and move to the ~/cyclonedds/build/bin/ directory and in each terminal
run:

$./HelloworldSubscriber
$./HelloworldPublisher

Notes

Note: In order to customize the configuration of Cyclone DDS create a .xml file and point to it (in Linux) by:

$ export CYCLONEDDS_URI=file://$PWD/cyclonedds.xml

For example the following configuration file was utilized to choose the wifi0 network interface over all others.

<?xml version="1.0" encoding="UTF-8" ?>
<CycloneDDS xmlns="https://cdds.io/config" xmlns:xsi="http://www.w3.org/2001/

→˓XMLSchema-instance" xsi:schemaLocation="https://cdds.io/config https://raw.
→˓githubusercontent.com/eclipse-cyclonedds/cyclonedds/master/etc/cyclonedds.xsd">

<Domain id="any">
<General>

<NetworkInterfaceAddress>wifi0</NetworkInterfaceAddress>
</General>

</Domain>
</CycloneDDS>

Tips

Tip: Windows installation of CycloneDDS proved somehow problematic, instead a Linux subsystem using Ubuntu
was utilized from within Windows.

Todo: Install CycloneDDS on a Windows machine.

1.2. Main Table of Content 79

DDS-Demonstrators, Release TechPush

Links

• CycloneDDS Repository: https://github.com/eclipse-cyclonedds/cyclonedds

• Introducing Eclipse Cyclone DDS: https://www.youtube.com/watch?v=-qVHbTTXRKs&t=209s

• Eclipse Cyclone DDS: Data Sharing in the IoT Age: https://www.youtube.com/watch?v=2q86azIbSvA

Setup Guide for Cyclone DDS Python API

Geting Started

The Python DDS binding depends on:

• jsonpickle

• CycloneDDS

Installation

To install jsonpickle via Pip on Linux/Raspberry Pi:

$ pip3 install jsonpickle

To download, build and install the Python DDS binding on Linux/Raspberry Pi run:

$ git clone https://github.com/atolab/cdds-python
$ cd python-cdds
$./configure
$ python3 setup.py install

Since two library files are required for the Python binding after executing the first ./configure go into /
cdds-python/bit/build/ and copy the libddstubs.so into /usr/local/lib/.

Edit the following line in the configure script to be as follows:

BIT_LIB=libddsc.so

Also edit the following two lines in CMakeLists.txt to look as follows:

add_library(ddsc SHARED dds_stubs.c)
target_link_libraries(ddsc ddsbit CycloneDDS::ddsc)

Run again:

$ cd python-cdds
$./configure
$ python3 setup.py install

Finally copy the libddsc.so file from /cdds-python/bit/build/ into /usr/local/lib/.

Warning: When executing ./configure an error might occur stating that idlc_generate was not found.
Simply edit the CMakeLists.txt inside /cdds-python/bit/ to look for the Cyclone DDS package in the
correct location:

80 Chapter 1. Measure & Blog

https://github.com/eclipse-cyclonedds/cyclonedds
https://www.youtube.com/watch?v=-qVHbTTXRKs&t=209s
https://www.youtube.com/watch?v=2q86azIbSvA

DDS-Demonstrators, Release TechPush

find_package(CycloneDDS REQUIRED COMPONENTS idlc PATHS "${CMAKE_CURRENT_SOURCE_DIR}/
→˓../../../..")

Warning: Running the command python3 setup.py install requires internet connection in order to
configure the jsonpickle package.

Links

• Cyclone DDS Python API: https://github.com/atolab/cdds-python

An Introduction to DDS with Examples

The following guide aims to present some of the core functionalities and features of DDS that were used by Team
Hurricane when implementing the Matrix Board Communication demonstrator in C. The main goal of this article is to
present a naive and simple approach to the complete process of creating a DDS application.

Topics in DDS

Topics in DDS are data objects for which values will be published/received to/from. Each topic consists of the follow-
ing:

• The topic type.

• The topic name.

• A set of Quality of Service (QoS) properties.

The topic type defines the data type that will be stored in that particular topic, while the topic name is a string that
identifies that topic within that particular communication domain. A DDS topic type contains an IDL structure and a
key. The QoS policies of the topic control the behavior of the DataReaders and DataWriters of that topic.

Topics are defined using the IDL specification language enabling the topics to retain independence from a certain
programming language. Mapping of IDL data types presents the mapping between various IDL data types to data
types of various programming languages. The figure below shows how a typical DDS application is built.

In the case of the Matrix Board Communication the topic type Msg was defined and it includes a structure with two
long and one string IDL primitives. The userID defines the identity number of the matrix board writing to
that topic while the traffic defines the traffic that was sensed by that matrix board. Finally the message string is
simply the name of that particular topic. The following snippets of code show the mapping from the IDL to C language
of the topic type Msg defined for the communication of the matrix boards.

1.2. Main Table of Content 81

https://github.com/atolab/cdds-python
https://tinyurl.com/qt28c5s

DDS-Demonstrators, Release TechPush

struct Msg
{

long userID;
long traffic;
string message;

};
#pragma keylist Msg userID

typedef struct MBCData_Msg
{

int32_t userID;
int32_t traffic;
char * message;

} MBCData_Msg;

Within our application before initializing a topic, we must create a participant on a given domain (in this case the
default domain) using:

participant = dds_create_participant(DDS_DOMAIN_DEFAULT, NULL, NULL);

In the context of the matrix board communication, a matrix board can initialize a topic using the following function:

topic = dds_create_topic(participant, &MBCData_Msg_desc, topic_name, NULL, NULL);

In the function above, the &MBCData_Msg_desc refers to the data type that the topic is initialized to, while
topic_name is a string containing the name of the topic. Topics with the same data type but different names
are considered different topics.

Data Writers in DDS

Data writers are DDS entities which have the ability to write to a given topic.

After initializing a participant on a certain domain as well as a topic, one can create a data writer on that particular
topic using:

writer = dds_create_writer(participant, topic, NULL, NULL);

It is possible to add another layer of abstraction which is a publisher. A publisher includes multiple writers and its
main purpose is to manage his group of writers.

In the context of the matrix board communication, each matrix board has only one data writer which writes data only
to the topic of that particular board.

Writing Data to a Topic

In order to demonstrate how data can be written to a particular topic let us look again at the example of the matrix
board communication. First initialize the data that needs to be written:

MBCData_Msg msg;
/* Create a message to write. */
msg.userID = MBC_id;
msg.traffic = traffic_number;
msg.message = topic_name;

And then simply write the data using the writer and initialized data using:

82 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

dds_write (writer, &msg);

Also, DDS provides event-based activation. Meaning that we can perform a write operation depending on a particular
event, (e.g. a data reader coming online etc.). In the case of the matrix board communication, each board updates its
own topic every second (polling based write).

Data Readers in DDS

Data readers are DDS entities which have the ability to read from a given topic.

After initializing a participant on a certain domain as well as a topic, one can create a data reader on that particular
topic using:

reader = dds_create_reader(participant, topic, NULL, NULL);

Similarly to publishers, it is possible to add another layer of abstraction which is a subscriber. A subscriber includes
multiple readers and its main purpose is to manage his group of readers.

In the context of the matrix board communication, each matrix board has an array of readers starting from its own ID
number and up to a certain predefined ID number. It is obvious that it has the respective array of topics since they are
required to create each reader. This enables the scanning and detection of two of the closest matrix boards which are
“alive”.

Reading Data from a Topic

In order to read data from a topic, one has to perform some additional steps when compared to a write operation.
First of all, we must initialize a sample array using the macros created from the compilation of our .idl file (see
resulting .c and .h files from Topics in DDS chapter):

samples[0] = MBCData_Msg__alloc ();

Then, for the actual data read we have to options. The first option is to use the following function:

dds_read(reader, samples, infos, MAX_SAMPLES, MAX_SAMPLES);

Using dds_read will return a copy of the read samples, leaving them available in the reader’s history cache so they
can be read again later (marking it as “read” along the way). While the second option is to utilize:

dds_take(reader, samples, infos, MAX_SAMPLES, MAX_SAMPLES);

Using dds_take will return the samples but also removes them from the reader’s history cache (but not from any
other readers’ history caches). In the case of the matrix board the dds_take function was used since we do not use
previous samples for anything and it is more efficient to remove them from our cache. After reading the data one has
to also free the data location that was initialized, again using the provided macros. An example from the MBC is the
following:

MBCData_Msg_free (samples[0], DDS_FREE_ALL);

Links

• Mapping of IDL data types: https://tinyurl.com/qt28c5s

• DDS Tutorial by A. Corsaro: http://www.laas.fr/files/SLides-A_Corsaro.pdf

1.2. Main Table of Content 83

https://tinyurl.com/qt28c5s
http://www.laas.fr/files/SLides-A_Corsaro.pdf

DDS-Demonstrators, Release TechPush

DDS Performance Study

In this part we look at important design choices around DDS and discover how different choices influence the perfor-
mance of DDS. The design choices in question can be summarized to the following:

1. Docker deployment and its effect on performance.

2. Ethernet vs. WiFi networking.

3. Router effects on performance.

4. CPU frequency scaling and its effect on performance.

In order to answer all these questions we choose the Roundtrip and Flood demonstrators since the former gives a good
estimate on how quickly a message can move through our DDS network and the latter also saturates our network as
well as the processor usage. In each case we look at a network of 4 hubs with 1 master hub and 3 slave hubs and a
Flood with size of 1000 messages. For more information on the setup refer to Round trip and Flood in C.

Docker and Ethernet vs. WiFi Performance

In this section we are going to look at the performance of DDS when deployed using standalone executables on
a machine compared to deployment of DDS through containers. In each scenario we also look at both wired and
wireless networking. We define the following scenarios:

1. 1 Node: all 4 hubs run on a single machine (Inter-Process Communication).

2. Docker 1 Container: all 4 hubs run inside one container on one machine (Inter-Container Communication).

3. 2 Nodes: Master hub runs on machine A, Hub 1 runs on Machine B, Hub 2 runs on machine A and Hub 3 runs
on machine B (Inter-System Communication).

4. Docker 2 Containers: Master hub runs in container 1A of machine A, Hub 1 runs in container 1B of Machine
B, Hub 2 runs in container 1A of machine A and Hub 3 runs in container 1B of machine B.

5. Docker 4 Containers: Master hub runs in container 1A of machine A, Hub 1 runs in container 1B of Machine
B, Hub 2 runs in container 2A of machine A and Hub 3 runs in container 2B of machine B.

84 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

The results for both the Roundtrip and Flood experiments can be seen in the figures above. We can conclude that
there is no performance penalty for using DDS inside a Docker container, this can be seen by comparing the 1 Node
to the Docker 1 Container for both demonstrators. Furthermore, we can deduct that over Ethernet Docker container
deployment performs in an identical manner to the normal standalone deployment (i.e. comparing 2 Nodes to Docker
2 Containers). This is an expected result since we use host networking which means that the container sees the host’s
network as its own. In the case we would use bridged networking mode we would expect the performance to be worse
due to the added overhead of going through the host’s internal bridge connection. In addition, we also see that for
the Flood experiment over Ethernet all experiments yield the same results due to the fact that we saturate our network
bandwidth. In the case of WiFi, it is logical to have larger execution times when moving to 2 separate nodes.

In conclusion, we expected the wireless setup to perform much slower than a wired connection. The most important
take away from this study is that Docker containers perform as good as a native implementation. More on this matter
can be found in an interesting paper by IBM with the title‘An Updated Performance Comparison of Virtual Machines
and Linux Containers <https://tinyurl.com/hmj4vex>‘_. Finally, we note that inter-container communication results in
the same connection penalty as communication between separate nodes.

Router Effect on Performance

In this section, we look at the effect different routers will have on the performance. This research is conducted in order
to determine the difference between the following categories of routers:

1. Cheap Embedded Router Solution, such as the Raspberry Pi Zero W.

2. Modular lightweight and low cost Solution, such as a USB WiFi dongle.

3. Dedicated mid price point router Solution.

4. Dedicated high price point router Solution.

The routers under investigation are the following:

1. Raspberry Pi Zero W.

2. Asus USB-AC53 dongle.

3. Linksys X3500 router.

4. Arcadyan AC2200 router.

Both Roundtrip and Flood demonstrators were setup up with the 2 node configuration:

1.2. Main Table of Content 85

https://tinyurl.com/hmj4vex

DDS-Demonstrators, Release TechPush

• 2 Nodes: Master hub runs on machine A, Hub 1 runs on Machine B, Hub 2 runs on machine A and Hub 3
runs on machine B (Inter-System Communication).

It is important to note at this point that all configurations were positioned in close proximity from the wireless router
in order to alleviate any differences caused by different antenna sizes at higher distances (i.e. dedicated routers larger
antenna arrays). The results show a clear advantage for the dedicated routers. In the case of the Roundtrip demo we
see that the expensive router provides a 2 time performance boost over the cheap embedded router in the Raspberry Pi
Zero W, while in the case of Flood where the network is saturated this difference is in the order of 3. We can already
draw our first conclusion, which is that for applications where higher bandwidth is required, a dedicated router is the
clear winner. At the same time, if we look at the cost effectiveness of our solution the price difference is almost 10x
as high for the expensive dedicated router over a Raspberry Pi Zero. Similarly, the USB WiFi dongle also gives a
performance boost over the embedded router but the difference in performance does not justify the difference in price
which is 2x more just for a dongle compared to a full computer. Finally, it is also interesting to compare the two
dedicated routers that come at different price points (50 euros vs. 100 euros). The more expensive router is by a small
margin faster. It is interesting to note that the two dedicated routers were also tested in the same experimental setup
over Ethernet connection, with identical performance results. In conclusion, the choice of router really depends on the
application. An application that requires high bandwidth and/or across an increasing number of nodes will definitely

86 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

benefit vastly from a dedicated high performance router. On the other hand, one can easily see the benefits of using an
embedded device or a dongle as a router.

Effect of CPU Frequency Scaling on Performance

In this section we investigate the effect of a CPU frequency scaling on the performance of our two DDS demonstrators
(i.e. Roundtrip and Flood). For this setup we choose to utilize the Inter-process Communication on a single machine.
Furthermore, we choose to utilize the Sogeti laptop that utilizes an Intel i5-8350U with 4 cores and 8 threads. This
choice was made mainly due to the ease of scaling the frequency on a Windows machine through different maximum
CPU states.

The results show an exponential decay in execution time with respect to CPU frequency, for both Roundtrip and Flood.
As a result, we can conclude that Flood is bandwidth bound and the communication speed is more important than the
per node calculation time.

1.2. Main Table of Content 87

DDS-Demonstrators, Release TechPush

Docker Guide: How to create and run a Docker Image

The following guide will discuss all the necessary steps in order to create a Docker image and also how to run a
container from an image.

Installing Docker

The first step is to install Docker on our machine of interest. For Windows/MacOS we require Docker Desktop. This
can be downloaded from here. An important note is that we prefer the Edge channel rather than the Stable channel,
since the Edge channel enables us to build on x86 machines images for other architectures such as ARM (see Building
Multi-Arch Images chapter).

For Linux Systems such as the Raspberry Pi:

$ sudo apt-get update && sudo apt-get upgrade
$ curl -fsSL https://get.docker.com -o get-docker.sh
$ sudo sh get-docker.sh

Add a Non-Root User to the Docker Group:

$ sudo usermod -aG docker [user_name]

Check Docker version:

$ docker version

Docker Workflow

We begin by describing the general Docker workflow. Usually, we begin by creating a Dockerfile. In a nutshell, a
Dockerfile is a script which describes the commands we would like to execute within a container. This container is
then saved as a new Docker image. Let’s provide an example for the sake of understanding:

FROM alpine:latest

RUN apk update && apk add git && apk add bash

WORKDIR /src/

RUN git clone https://github.com/eclipse-cyclonedds/cyclonedds.git

This example clones the latest Alpine Linux image using the FROM command, updates and installs git and bash from
the apk repo using the RUN command. Then creates a folder src moves into it and clones the CycloneDDS repo. The
result is an image that runs Alpine Linux, has git and bash installed and the repo CycloneDDS in a src directory. The
above described workflow can be seen in the following diagram.

88 Chapter 1. Measure & Blog

https://www.docker.com/products/docker-desktop

DDS-Demonstrators, Release TechPush

The following link presents some of the Best practices for writing Dockerfiles. In addition, the following link is the
Dockerfile reference guide.

Similarly to any other code hosting service (e.g. github, bitbucket etc.) there is a Docker Hub that hosts Docker images.
As a result, in some cases the workflow from above can be changed to skip building the image from a Dockerfile to
simply cloning a pre-existing image that satisfies that particular need.

Multi-stage Builds

Multi-stage builds refer to Dockerfiles that use various images throughout the building process. It is easier to explain
this with an example, consider the following:

FROM alpine:latest AS build

RUN apk update && apk add git && apk add cmake && apk add --no-cache build-base && \
apk add maven && apk fetch openjdk8 && apk add openjdk8 && apk add linux-headers &

→˓& \
apk add bash

WORKDIR /src/

RUN git clone https://github.com/eclipse-cyclonedds/cyclonedds.git

WORKDIR /dds/

WORKDIR /src/cyclonedds/build

RUN cmake -DCMAKE_INSTALL_PREFIX=/dds/ .. && \
cmake --build . && cmake --build . --target install

FROM alpine:latest

RUN apk update && apk add bash

WORKDIR /dds/

COPY --from=build /dds/ ./

The first stage named BUILD will start from the latest Alpine Linux image and will install all the dependencies
required by CycloneDDS (more on these dependencies can be found Setup Guide for CycloneDDS). Subsequently, it
clones the CycloneDDS repo and builds it. Then we move to the second and final stage, to which we will refer to as the
DEPLOY stage (separation of the two stages can be seen from the different FROM commands). In the DEPLOY stage,
we start from the clean latest Alpine Linux image and we copy only the executables we compiled in the previous stage.
This separation enables us to provide to the end user only the executables required for our application in a minimal
Linux environment. Also, the resulting image is drastically smaller in size.

Building Docker Images

After creating our Dockerfile, it is time to build our image which can be done by navigating to the folder of our
Dockerfile and executing:

$ docker build -t <image name> .

Similarly, we can also build images for each of the different stages we created, using:

1.2. Main Table of Content 89

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/engine/reference/builder/

DDS-Demonstrators, Release TechPush

$ docker build --target <stage name> -t <image name> .

Finally, using $ docker images we can see all the images in our system.

The build process can be seen in the following video.

Running Docker Containers

Containers are running instances of images. In order to create a new container we run the following command:

$ docker run --network="host" -ti --name <container name> <image name> bash

We provide a meaningful name for our new container and the name of an already existing image. Also, note that there
are many different options, but in the case of DDS we want our container to have the IP address of the host, so that it
can communicate over the host’s network.

Warning: Host networking does not work on Docker Desktop for Windows/MacOS. Basically, the command can
be used as is but the IP address will not be the same as the one the host receives from its network. Nevertheless,
containers can still communicate between each other and within the same container, just not with the outside
network.

Furthermore, we can open another terminal on an already running container by using:

$ docker exec -it <existing container name> bash

Note: In all of the above mentioned commands we execute bash since it is installed on our images. If you do not
have bash installed use /bin/sh instead.

Building Multi-Arch Images

Finally we describe how we can actually build images for different architectures than the one on the machine we are
currently building on. This is useful in the case we want to build an image for the Raspebrry Pi on a x86 Windows
Machine which has more processing power. A pre-requisite for this is to have the Edge channel of Docker Desktop
installed. First we check what buildx builders are available and create a new builder using:

$ docker buildx ls
$ docker buildx create --name <builder name>

We select that specific builder using:

$ docker buildx use <mybuilder>
$ docker buildx inspect --bootstrap

Finally, we build and push our new image for the selected architecture to a new Docker Hub repo using:

$ docker buildx build --platform linux/arm/v7 -t <username/repo name>:<image name> --
→˓push .

90 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

Building Demo Image

The Dockerfile created for the C implementations of the Round trip as well as the different versions of the Matrix Board
Communication can be found in the ~/src/docker/Build_C_MBC_Roundtrip/ directory of this repository.
First, we need to build this image by navigating to the above mentioned directory and using:

$ docker build -t <image name> .

Then we can create a container of this image using:

$ docker run -it --network="host" --name <container name> <image name>

For more information on how to execute the experiments please refer to the docker sections of each respective Round
trip and Flood in C and Matrix Board Communication in C demonstrator.

Links

• Shipping C++ Programs in Docker: A Journey Begins: https://tinyurl.com/yxn4gr3s

• Building Multi-Arch images: https://www.docker.com/blog/multi-arch-images/

Deploying DDS Over WAN

In this section we are going to discuss how we can deploy Cyclone DDS over WAN. We can think of many interesting
use cases in which we would like our DDS applications to be able to communicate with each other across the wider
network. Although many of the commercial DDS implementations include extensive documentation on how to con-
figure the DDS library through a .xml configuration file in order for applications to be able to communicate over the
wider network, the Cyclone DDS documentation is still lacking the explanation required for us to implement such a
scenario. Furthermore, some features are still not implemented in Cyclone DDS since there is no official release of
this library. As a result, performing the across-network discovery, which is the main issue in our case, can prove quite
difficult without utilizing some sort of common networking method.

In order to make sure that both remote nodes, which we wanted to connect, could discover each other it was decided
to create a VPN network using just a simple online service. This VPN service focuses on IoT lightweight networking
solutions. By connecting both nodes (in this case 2 Raspberry Pis with different internet connections) to this VPN
network we could move to configuring our discovery protocol. The discovery can be done in a similar manner to the
way we choose our DDS network interface, namely through the same cyclonedds.xml file. First, we find the IPv6
addresses provided by our VPN network to each individual node and we add them in our configuration by adding the
following block.

<Discovery>
<Peers>

<Peer address="[IPV6-address of local machine]"/>
<Peer address="[IPV6-address of remote machine]"/>

</Peers>
<ParticipantIndex>auto</ParticipantIndex>

</Discovery>

We add both IPv6 address to make sure that our configuration file can actually link our local machine to the remote.
We can also add the IPv4 addresses, but Cyclone DDS does not allow IPv4 and IPv6 address mixing. Finally, we
disable multicast since it is not supported by the VPN service and add all these blocks to our final configuration file.

1.2. Main Table of Content 91

https://tinyurl.com/yxn4gr3s
https://www.docker.com/blog/multi-arch-images/

DDS-Demonstrators, Release TechPush

<?xml version="1.0" encoding="UTF-8" ?>
<CycloneDDS xmlns="https://cdds.io/config" xmlns:xsi="http://www.w3.org/2001/
→˓XMLSchema-instance" xsi:schemaLocation="https://cdds.io/config https://raw.
→˓githubusercontent.com/eclipse-cyclonedds/cyclonedds/master/etc/cyclonedds.xsd">

<Domain id="any">
<General>

<NetworkInterfaceAddress>auto</NetworkInterfaceAddress>
<AllowMulticast>false</AllowMulticast>
<MaxMessageSize>65500B</MaxMessageSize>

<FragmentSize>4000B</FragmentSize>
<Transport>udp6</Transport>
</General>

<Discovery>
<Peers>

<Peer address="[IPV6-address]"/>
<Peer address="[IPV6-address]"/>

</Peers>
<ParticipantIndex>auto</ParticipantIndex>

</Discovery>
<Internal>

<Watermarks>
<WhcHigh>500kB</WhcHigh>

</Watermarks>
</Internal>
<Tracing>

<Verbosity>severe</Verbosity>
<OutputFile>stdout</OutputFile>

</Tracing>
</Domain>

</CycloneDDS>

An important conclusion that was drawn from the WAN experiment was that we need to add softer QoS constraints
into our application in order for the communication to function properly. For example, poc3 of the Matrix Board
Communication demonstrator does not function consistently well, mainly due to the fact that the communication
is extremely fast and expects that the samples require deletion after a few milliseconds. In the WAN case, those
milliseconds are not enough for the receiving node to actually read the message. In all other demonstrators where
the communication is much slower this issue was not noticed. In conclusion, adding such functionality requires the
developer to re-think his DDS timing constraints and add more relaxed QoS standards.

Links

• Using Cyclone DDS with Husarnet on ROS2: https://husarion.com/tutorials/other-tutorials/
husarnet-cyclone-dds/

Setting up Raspberry Pi network

In order to create a Raspberry Pi network, one of the Raspberry Pis will be used as a wifi router where all the other
devices will connect to.

The first step is to install DNSMasq and HostAPD using:

$ sudo apt install dnsmasq hostapd

Turn these two processes off:

92 Chapter 1. Measure & Blog

https://husarion.com/tutorials/other-tutorials/husarnet-cyclone-dds/
https://husarion.com/tutorials/other-tutorials/husarnet-cyclone-dds/

DDS-Demonstrators, Release TechPush

$ sudo systemctl stop dnsmasq
$ sudo systemctl stop hostapd

Configuring a static IP

To configure the static IP address, edit the dhcpcd configuration file with:

$ sudo nano /etc/dhcpcd.conf

Go to the end of the file and edit it as follows:

interface wlan0
static ip_address=192.168.4.1/24
nohook wpa_supplicant

Restart the dhcpcd daemon using:

$ sudo service dhcpcd restart

Configuring the DHCP server

First move the old configuration file into the .orig file and start a new one:

$ sudo mv /etc/dnsmasq.conf /etc/dnsmasq.conf.orig
$ sudo nano /etc/dnsmasq.conf

Add the following two lines

interface=wlan0 # Use the require wireless interface - usually wlan0
dhcp-range=192.168.4.2,192.168.4.20,255.255.255.0,24h

Interface wlan0 will provide IP addresses between 192.168.4.2 and 192.168.4.20.

Start the dnsmasq:

$ sudo systemctl start dnsmasq

Configuring the access point

Run the following command to edit the hostapd configuration file:

$ sudo nano /etc/hostapd/hostapd.conf

In case the file does not exist simply create it at the above mentioned location and add the following lines:

interface=wlan0
driver=nl80211
ssid=PID3
hw_mode=g
channel=7
wmm_enabled=0
macaddr_acl=0

(continues on next page)

1.2. Main Table of Content 93

DDS-Demonstrators, Release TechPush

(continued from previous page)

auth_algs=1
ignore_broadcast_ssid=0
wpa=2
wpa_passphrase=Sogeti2020
wpa_key_mgmt=WPA-PSK
wpa_pairwise=TKIP
rsn_pairwise=CCMP

Now we need to tell the system where to find the above mentioned file by:

$ sudo nano /etc/default/hostapd

By changing the following line to:

DAEMON_CONF="/etc/hostapd/hostapd.conf"

Start up

Finally start all the required services by running:

$ sudo systemctl unmask hostapd
$ sudo systemctl enable hostapd
$ sudo systemctl start hostapd

Routing and masquerade

Edit /etc/sysctl.conf and uncomment this line:

net.ipv4.ip_forward=1

Add a masquerade for outbound traffic on eth0 and save the iptables rule:

$ sudo iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE
$ sudo sh -c "iptables-save > /etc/iptables.ipv4.nat"

Edit /etc/rc.local and add this just above “exit 0” to install these rules on boot:

$ iptables-restore < /etc/iptables.ipv4.nat

Reboot and check if it works by connecting any device with wifi to this new network with the SSID and password
provided in the hostapd.conf file.

Now it is possible to use ssh on that network to connect to any of the devices on the network including the router
node.

IP addresses

The following IP addresses or hostnames with the corresponding passwords can be used to ssh into the Raspberry
Pis that connect to the wifi network with SSID = PID3 on raspberrypi-202.

94 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

Hostname IP address Password
raspberrypi-200 192.168.4.3 200
raspberrypi-201 192.168.4.6 201
raspberrypi-202 192.168.4.1 202
raspberrypi-203 192.168.4.20 203
raspberrypi-204 192.168.4.12 204
raspberrypi-205 192.168.4.13 205
raspberrypi-206 192.168.4.14 206

Links

• Raspberry Pi as an access point (NAT): https://tinyurl.com/y3byvmjz

Setup Guide for PlantUML

1) Download the latest platnuml.jar here.

2) Save the following script as plantuml (without the .sh extension) in some directory, like ~/bin.

#!/bin/sh

PLANTUML=/path/to/plantuml.jar

if [-n "${JAVA_HOME}"] && [-x "${JAVA_HOME}/bin/java"] ; then
JAVA="${JAVA_HOME}/bin/java"

elif [-x /usr/bin/java] ; then
JAVA=/usr/bin/java

else
echo Cannot find JVM
exit 1

fi

$JAVA -jar ${PLANTUML} ${@}

3) Finally, Add ~/bin to your PATH, with:

$ export PATH=$PATH:~/bin

Note: Add this last command in your .bashrc in order to make it persistent.

How-to keep your forked repo up-to-date

In order to keep our forked repository up to date with the original repository as well as with the repositories of each of
the collaborators, we add upstream repositories from which we can merge the changes into our reporitory.

First run:

1.2. Main Table of Content 95

https://tinyurl.com/y3byvmjz
https://plantuml.com/download

DDS-Demonstrators, Release TechPush

$ git remote add upstream <url_to_repo>

Note: In the above command upstream refers to the name so give it a significant name if you are going to add
multiple remote repositories.

List all the remote repositories with:

$ git remote -v

If the remote has been added succesfuly do the following to merge the changes into your own master branch:

$ git fetch uptream
$ git checkout master
$ git merge upstream/master

If you want to push the changes to your own remote repository do:

$ git push origin master

Finally, in order to remove the upstream remote repository simply:

$ git remote rm upstream

Links

• Keep forked repository current: https://dev.to/ranewallin/how-to-keep-your-forked-repository-current-38mn

Merging Repositories

Question: Can we merge a repository into another without losing history? For merging two existing repositories a lot
can be found on the internet. Eventually I merged two found methods into one method. The second part of the first
method did not result in the wanted behavior. For that the second method was used.

The found methods:

• method 1

• method 2

Tip: Within the following steps repository A will be merged into repository B. It is wise to create a temporary
directory in which both repositories will be cloned, so when a certain step does not have the wanted outcome it will be
fairly easy to start all over again.

Note: Most of the steps below are shown from a script used to execute the merge between two repositories, see
merge_git_repo_a_to repo_b.

96 Chapter 1. Measure & Blog

https://dev.to/ranewallin/how-to-keep-your-forked-repository-current-38mn
https://www.atlassian.com/git/tutorials/git-move-repository
https://medium.com/@ayushya/move-directory-from-one-repository-to-another-preserving-git-history-d210fa049d4b

DDS-Demonstrators, Release TechPush

Steps

Create temporary directory:

mkdir $HOME/tmp/merge_git_repos
cd $HOME/tmp/merge_git_repos

Clone repository A into a temporary name tmp_repo_a:

git clone <url of repo a> tmp_repo_a

Clone repository B into a temporary name tmp_repo_b:

git clone <url of repo b> tmp_repo_b

Execute script for merging repo a into repo b:

merge_git_repo_a_to_repo_b

Note: The script can also be used with the locations of the two repositories (e.g. merge_git_repo_a_to_repo_b
<location repo a> <location repo b>. If the location are omitted the defaults tmp_repo_a and tmp_repo_b are used.

Executed steps from the shell script:

Checkout all the branches you want to copy from repository A:

cd $REPO_A_PATH
git branch -a > $MERGE_PATH/repo_a_branches.txt
for branch in `cat $MERGE_PATH/repo_a_branches.txt`
do

git checkout $branch
done

Fetch all the tags from repository A:

git fetch --tags

Check if you have all the tags and branches:

git tag
git branch -a

Clear the link to the remote of repository A:

git remote rm origin

Do some filtering for rewriting the history:

git filter-branch -f --tree-filter 'mkdir -p toDelete;git mv -k docs/Makefile
→˓toDelete/.;git mv -k docs/_external_templates/conf/* toDelete/.;git mv -k docs/_
→˓external_templates/static/* toDelete/.;git mv -k docs/requirements.txt toDelete/.;
→˓git mv -k docs/doc/_generic.inc toDelete/.;git mv -k docs/doc/conf.py toDelete/.;
→˓git mv -k docs/doc/index.rst toDelete/docs_index.rst;git mv -k README.md toDelete/.
→˓' HEAD
git filter-branch -f --tree-filter 'mkdir -p docs/doc/Teams/0.Talk_like_pi;git mv -k
→˓docs/doc/teams/2018.1_Talk_like_pi/* docs/doc/Teams/0.Talk_like_pi;git mv -k docs/
→˓doc/teams/index.rst toDelete/teams_index.rst' HEAD (continues on next page)

1.2. Main Table of Content 97

DDS-Demonstrators, Release TechPush

(continued from previous page)

git filter-branch -f --tree-filter 'mkdir -p docs/doc/Demonstrators;git mv -k docs/
→˓doc/IPSC/* docs/doc/Demonstrators/.' HEAD
git filter-branch -f --tree-filter 'mkdir -p src/demonstrators/
→˓ComparedToOtherProtocols/MQTT/Bandwidth/Python;mkdir -p docs/doc/Demonstrators/
→˓ComparedToOtherProtocols/Bandwidth/MQTT;git mv -k IPSC/MQTT/py/Bandwidth/* src/
→˓demonstrators/ComparedToOtherProtocols/MQTT/Bandwidth/Python; git mv -k src/
→˓demonstrators/ComparedToOtherProtocols/MQTT/Bandwidth/Python/readme.rst docs/doc/
→˓Demonstrators/ComparedToOtherProtocols/Bandwidth/MQTT/index.rst;git mv -k src/
→˓demonstrators/ComparedToOtherProtocols/MQTT/Bandwidth/Python/ipc/readme.rst docs/
→˓doc/Demonstrators/ComparedToOtherProtocols/Bandwidth/MQTT/ipc.rst;git mv -k src/
→˓demonstrators/ComparedToOtherProtocols/MQTT/Bandwidth/Python/isc/readme.rst docs/
→˓doc/Demonstrators/ComparedToOtherProtocols/Bandwidth/MQTT/isc.rst' HEAD
git filter-branch -f --tree-filter 'mkdir -p src/demonstrators/
→˓ComparedToOtherProtocols/MQTT/RoundTrip/Python;mkdir -p docs/doc/Demonstrators/
→˓ComparedToOtherProtocols/RoundTrip/MQTT;git mv -k IPSC/MQTT/py/RoundTrip/* src/
→˓demonstrators/ComparedToOtherProtocols/MQTT/RoundTrip/Python;git mv -k src/
→˓demonstrators/ComparedToOtherProtocols/MQTT/RoundTrip/Python/readme.rst docs/doc/
→˓Demonstrators/ComparedToOtherProtocols/RoundTrip/MQTT/index.rst;git mv -k src/
→˓demonstrators/ComparedToOtherProtocols/MQTT/RoundTrip/Python/ipc/readme.rst docs/
→˓doc/Demonstrators/ComparedToOtherProtocols/RoundTrip/MQTT/ipc.rst;git mv -k src/
→˓demonstrators/ComparedToOtherProtocols/MQTT/RoundTrip/Python/isc/readme.rst docs/
→˓doc/Demonstrators/ComparedToOtherProtocols/RoundTrip/MQTT/isc.rst' HEAD
git filter-branch -f --tree-filter 'mkdir -p src/demonstrators/
→˓ComparedToOtherProtocols/MQTT/PingPong/Python;mkdir -p docs/doc/Demonstrators/
→˓ComparedToOtherProtocols/PingPong/MQTT;git mv -k IPSC/MQTT/py/* src/demonstrators/
→˓ComparedToOtherProtocols/MQTT/PingPong/Python;git mv -k src/demonstrators/
→˓ComparedToOtherProtocols/MQTT/PingPong/Python/readme.rst docs/doc/Demonstrators/
→˓ComparedToOtherProtocols/PingPong/MQTT/index.rst' HEAD
git filter-branch -f --tree-filter 'mkdir -p src/demonstrators/
→˓ComparedToOtherProtocols/ZMQ/Bandwidth/Python;mkdir -p docs/doc/Demonstrators/
→˓ComparedToOtherProtocols/Bandwidth/ZMQ;git mv -k IPSC/ZMQ/py/Bandwidth/* src/
→˓demonstrators/ComparedToOtherProtocols/ZMQ/Bandwidth/Python;git mv -k src/
→˓demonstrators/ComparedToOtherProtocols/ZMQ/Bandwidth/Python/readme.rst docs/doc/
→˓Demonstrators/ComparedToOtherProtocols/Bandwidth/ZMQ/index.rst' HEAD
git filter-branch -f --tree-filter 'mkdir -p src/demonstrators/
→˓ComparedToOtherProtocols/ZMQ/RoundTrip/Python;git mv -k IPSC/ZMQ/py/RoundTrip/* src/
→˓demonstrators/ComparedToOtherProtocols/ZMQ/RoundTrip/Python' HEAD
git filter-branch -f --tree-filter 'mkdir -p src/demonstrators/
→˓ComparedToOtherProtocols/ZMQ/Push-Pull/Python;git mv -k IPSC/ZMQ/py/Push-Pull/* src/
→˓demonstrators/ComparedToOtherProtocols/ZMQ/Push-Pull/Python' HEAD
git filter-branch -f --tree-filter 'mkdir -p src/demonstrators/
→˓ComparedToOtherProtocols/ZMQ/Request-Reply/PingPong/Python;git mv -k IPSC/ZMQ/py/
→˓Request-Reply/PingPong/* src/demonstrators/ComparedToOtherProtocols/ZMQ/Request-
→˓Reply/PingPong/Python' HEAD
git filter-branch -f --tree-filter 'mkdir -p src/demonstrators/
→˓ComparedToOtherProtocols/ZMQ/Request-Reply/RoundTrip/Python;git mv -k IPSC/ZMQ/py/
→˓Request-Reply/Roundtrip/* src/demonstrators/ComparedToOtherProtocols/ZMQ/Request-
→˓Reply/RoundTrip/Python' HEAD
git filter-branch -f --tree-filter 'mkdir -p src/demonstrators/
→˓ComparedToOtherProtocols/ZMQ/PingPong/Python;mkdir -p docs/doc/Demonstrators/
→˓ComparedToOtherProtocols/PingPong/ZMQ;git mv -k IPSC/ZMQ/py/* src/demonstrators/
→˓ComparedToOtherProtocols/ZMQ/PingPong/Python;git mv -k src/demonstrators/
→˓ComparedToOtherProtocols/ZMQ/PingPong/Python/readme.rst docs/doc/Demonstrators/
→˓ComparedToOtherProtocols/PingPong/ZMQ/index.rst' HEAD
git filter-branch -f --tree-filter 'mkdir -p src/demonstrators/PingPong/Python;mkdir -
→˓p docs/doc/Demonstrators/PingPong;git mv -k IPSC/DDS/CycloneDDS/py/PingPong/* src/
→˓demonstrators/PingPong/Python;git mv -k src/demonstrators/PingPong/Python/readme.
→˓rst docs/doc/Demonstrators/PingPong/index.rst' HEAD (continues on next page)

98 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

(continued from previous page)

git filter-branch -f --tree-filter 'mkdir -p src/demonstrators/RoundTrip/Python;mkdir
→˓-p docs/doc/Demonstrators/RoundTrip;git mv -k IPSC/DDS/CycloneDDS/py/Loop/* src/
→˓demonstrators/RoundTrip/Python;git mv -k src/demonstrators/RoundTrip/Python/readme.
→˓rst docs/doc/Demonstrators/RoundTrip/index.rst' HEAD
git filter-branch -f --index-filter 'git rm -r --cached --ignore-unmatch toDelete'
→˓HEAD

Tip: The index-filter takes less time in comparison to the tree-filter and can be used for removing files/directories.
Also sometimes removing files/directories using the tree-filter does not always rewrite history.

For changing the directory structure the following commands can be used within a tree-filter

> mkdir -p <new directory>;git mv -k <file to move> <new directory>

For removing a file/directory the following command can be used within a index-filter

> git rm -r –cached –ignore-unmatch <file or directory>

Note: The order of the actions within the commands or executed filtering is very important. It is best to first move
sources and finally removing files/directories, since the second filtering must use option -f (force) to be executed.

Removing garbage from filtering:

git reset --hard
git gc --aggressive
git prune
git clean -fd

Perfrom any necessary changes and commit these:

git status
git add .
git commit

Create a new branch in repository B:

cd $REPO_B_PATH
create a new branch
git checkout -b feature/merge_git_repos

Create a remote connection to repository A as a branch in repository B:

git remote add repo-a $REPO_A_PATH

Note: repo-a can be anything - it’s just a random name

Pull files and history from branches into repository B:

git pull repo-a master --allow-unrelated-histories

Remove the remote connection to repository A:

1.2. Main Table of Content 99

DDS-Demonstrators, Release TechPush

git remote rm repo-a

Finally, push the changes:

git push origin <new branch name>

Migrating mercurial to git

Question: Can we merge a mercurial repository into existing git repository without losing history? For the migration
of a mercurial to a git repository not much can be found. The are only a few different methods. I found a url where
several migration paths to git have been defined (see url).

Tip: Within the following steps repository A will be migrated from a mercurial to a git repository. It is wiste to create
a temporary directory in which the mercurial repository will be cloned and migrated to a git repository.

Note: Most of the steps below are shown from a script used to execute the migration of a mercurial repository to a git
repository, see migrate_mercurial_to_git. For the execution of the script the url of the mercurial repository
needs to be provided as an argument.

usage() {
echo "migrate_mercurial_to_git <url mercurial repo>"
echo ""

}

Steps

Needed tooling for migration:

Clone tooling repository:

mkdir -p $MIGRATE_PATH
cd $MIGRATE_PATH

git clone https://github.com/frej/fast-export.git
cd fast-export
git checkout v180317

Tip: During the first attempts I was getting some errors (unexpected “(” in hg-fast-export.sh, hg-fast-export.py cannot
import name revsymbol). Eventually found the resolution to checkout a specific version of the tool.

Mercurial repository:

Clone the mercurial repository into temporary name hg_repo and collect committing users:

cd ..
hg clone $1 $HG_REPO
hg log | grep user: | sort | uniq | sed 's/user: *//' > $AUTHORS_FILE

100 Chapter 1. Measure & Blog

https://git-scm.com/book/en/v2/Git-and-Other-Systems-Migrating-to-Git

DDS-Demonstrators, Release TechPush

Fix the authors file to reflect the correct syntax for users in git:

Note: Example for fixing the authors file: ”bob”=”Bob Jones <bob@company.com>” ”bob@localhost”=”Bob Jones
<bob@company.com>” ”bob <bob@company.com>”=”Bob Jones <bob@company.com>” ”bob jones <bob <AT>
company <DOT> com>”=”Bob Jones <bob@company.com>”

Create initial git repository and migrate mercurial repository to this:

git init $CONVERTED_PATH
cd $CONVERTED_PATH
$MIGRATE_PATH/fast-export/hg-fast-export.sh -r $HG_REPO_PATH -A $AUTHORS_FILE

git checkout HEAD

Note: Any next steps depend on what should be the actual result. If this is a new git repository the appropriate action
for this need to be executed. In our case it had to be merged into an existing git repository. For that already a procedure
has been created (Merging Repositories). This only needs to be adapted since repository A does not need to be cloned.
For repository A the location <tmp_dir>/converted can be used.

Git workflow DDS-Demonstrators

There are several workflows for using git. We started with a centralized workflow. However a bottleneck was encoun-
tered in the time to be spent on the pull-requests towards the central repository. Any subsequent changes to the ‘local’
master influenced the outstanding pull-requests. This needed to be addressed, by finding a different workflow to be
used where all the parties could continue.

The following workflows have been examined, link:

• Integration-manager workflow

• Dictator and lieutenant workflow

The result is a variant of both.

1.2. Main Table of Content 101

mailto:bob@company.com
mailto:bob@localhost
mailto:bob@company.com
mailto:bob@company.com
mailto:bob@company.com
mailto:bob@company.com
https://git-scm.com/book/en/v2/Distributed-Git-Distributed-Workflows

DDS-Demonstrators, Release TechPush

The gatekeeper forks the central repository and the developers fork the gatekeeper repository. For the gatekeeper and
developers repository the dev branch is used for pushing/pulling changes using pull-requests. Only the gatekeeper will
address the master branch on the central repository by means of pull-requests.

So, for all changes to be merged (independent of the repository) a pull-request is needed to uphold the needed quality
for documentation and source. Because all developers fork the gatekeeper, they can benefit from each other and there
would be no need to interchange documentation or source between their repositories and avoids any merge conflicts.

Some workflows:

102 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

1.2. Main Table of Content 103

DDS-Demonstrators, Release TechPush

Team Demonstra-Tors

authors Sam Laan, Furkan Ali Yurdakul, Bendeguz Toth and Joost Baars

date Feb 2020

104 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

These team pages contain our findings during the project.

DDS on bare-metal embedded hardware devices

authors Furkan Ali Yurdakul

date Feb 2020

Possible solutions

Research was done concerning different solutions for using the DDS communication protocol in an embedded envi-
ronment. Each result will be compared to the requirements listed underneath, these were discussed with the project
owner.

Requirements:

• It must be easily accessible for an average user. For example: a known website, in stock and doesn’t take more
than a week to get it home.

• This solution will have to make use of the TCP/IP communication since this is the base of the DDS communi-
cation protocol.

• The hardware must be relatively cheap (max C50). For example: affordable for the average student.

To be able to do this, each solution will have a small summary to create an insight about it. Afterwards there will be
a small hypothesis to see if the solution can be used to finish the project within a reasonable timeframe and fits the
requirements. The estimated time to fully implement the solution will be given in days and is estimated by experience,
knowledge and the amount of work it will need.

SLIP/PPP

Summary of the solution

1.2. Main Table of Content 105

DDS-Demonstrators, Release TechPush

SLIP and PPP are known for implementing TCP/IP protocol in embedded hardware to communicate over serial ports.
These protocols have been used a lot in the past and implementation enabled communication over TCIP/IP in most
cases. Because this is just about the communication and not the implementation of the DDS communication protocol,
this would mean that research has to be performed about the calls that are used to send or receive within the DDS
communication protocol.

PPP is a newer version of SLIP but also more complex to use. The complexity will need a lot more storage on your
embedded hardware compared to SLIP. PPP also has more configurable options like authentication, compression and
encryption. However, in this project all that’s needed is a TCP/IP connection, so SLIP will be preferable in this case.

Hypothesis

Reference

SLIP SLIP Arduino implementation PPP

This solution would be great to implement since it would make it possible to use DDS communication protocol in
a wide variety of embedded hardware. These protocols are made to be used by everyone and the specifications are
easy to find. Since it’s a protocol which exists over a longer period, people can find many implementations for known
embedded hardware like Arduino. These protocols on their own don’t have any costs, only the hardware will be
calculated in the cost. The estimated amount of days it will cost to finish this project using this solution is 60 days.

MicroPython/Pyboard

Summary of the solution

MicroPython is an efficient implementation of the programming language Python 3 with the standard libraries and is
optimized to run on embedded hardware, specifically for the Pyboard. It also contains hardware-specific modules to
make use of different low-level hardware, for example: I2C and GPIO.

The Pyboard is a compact electronic circuit board that runs MicroPython on the bare metal, giving you a low-level
Python operating system that can be used to control all kinds of electronic projects.

Hypothesis

Reference

Micropython/Pyboard ESP8266 Micropython

Its already known that DDS can be implemented with different kind of programming languages including Python. In
this case the Pyboard only misses a connection made by the TCP/IP protocol. The Pyboard is available in online stores
and has a lot of resources to fully understand how it works. The Pyboard itself costs C59 which makes it slightly more
expensive than the cost requirements. The original Pyboard can be used with SLIP/PPP or the Pyboard “ESP8266

106 Chapter 1. Measure & Blog

https://en.wikipedia.org/wiki/Serial_Line_Internet_Protocol
https://playground.arduino.cc/Code/SerialIP/
https://en.wikipedia.org/wiki/Point-to-Point_Protocol
https://micropython.org/
https://www.hobbyelectronica.nl/product/esp8266-micropython/

DDS-Demonstrators, Release TechPush

Micropython” can be used. The estimated amount of days it will cost to finish this project using this solution is 70
days.

Arduino + Ethernet

Summary of the solution

Arduino has many products in-house. For this project, only the most relevant will be considered. First, there is the
standard Arduino UNO Rev3. It is very likely that a programmer has this kind of board and therefore familiar with
the programming language C/C++. The disadvantage of this board is that there is no Ethernet port. It can use the
SLIP protocol as mentioned earlier, or an Arduino Ethernet Shield 2 can be used. This is an add-on for the standard
Arduino, with which you can use an Ethernet port for communication.

Honorable mentions; Arduino Ethernet w/o PoE and Arduino Yun Rev 2. Arduino Ethernet is a retired product and
Arduino Yun is a Linux based product. Therefore, these are not suitable for this project.

Hypothesis

Reference

Arduino Uno Rev3 Arduino Ethernet Shield Arduino Ethernet w/o PoE Arduino Yun Rev 2

On the forums of Arduino, it shows that SLIP has been implemented on Arduino. This makes it possible to use the
standard Arduino without the ethernet shield. However, when using the ethernet shield time can be saved to investigate
SLIP and its limitations. The Arduino Uno Rev3 costs 20 euro and the Ethernet Shield costs 25 euro, so it will cost 45
euros in total. The expected time for achieving the project with this solution is 60 days.

1.2. Main Table of Content 107

https://store.arduino.cc/arduino-uno-rev3\T1\textbar {}br\T1\textbar {}
https://store.arduino.cc/arduino-ethernet-shield-2
https://store.arduino.cc/arduino-ethernet-rev3-without-poe
https://store.arduino.cc/arduino-yun-rev-2

DDS-Demonstrators, Release TechPush

Embedded RTPS - STM32

Summary of the solution

This is the only solution for which there is evidence that the DDS communication protocol has worked. This solution
uses the microcontroller: STM32Nucleo-F767ZI. This Microcontroller has an Ethernet port at its disposal so there is
no need for SLIP/PPP. According to the GitHub page, this microcontroller has the minimum to create a communication
with a Linux device. According to this page, the 2 devices can send at least 10 messages back and forth.

Hypothesis

Reference

GitHub STM32Nucleo-F767ZI

Because this is a ready-made software package, it must first be investigated whether licenses are required for its use
within this project. This concept solution will speed up the time to a result and more time can be spent on a well-made
guide. The cost of this controller is 25 euros. It is expected that this can be achieved in 45 days.

Conclusion

When looking at the requirements, one is less noticeable but affects a project that is time-limited.

For hardware solutions that can’t directly use TCIP/IP communication, SLIP or PPP can be used. Because implement-
ing SLIP or PPP will take too much time, according to the hypothesis, a separate Arduino or standard PyBoard can’t
be used. The Arduino + the Ethernet add on would we applicable, but is too expensive.

We also need to look at how realistic these solutions are. The sources indicate that the “Embedded RTPS - STM32”
solution should be able to use DDS, which can be seen from the sources. After a short discussion, it was decided to
use the Nucleo for the final result.

Check “Nucleo Setup” to learn how to set up the environment for this device.

Interface Description Language (IDL) explanation

authors Joost Baars

date Feb 2020

The IDL language is used for the general data types between different programming languages. This language is the
layer between different programming languages and makes sure that the received message is formatted correctly for
the wanted programming language. In the DDS applications, a message is described using IDL. An example for an
IDL file with a message can be seen underneath.

108 Chapter 1. Measure & Blog

https://github.com/embedded-software-laboratory/embeddedRTPS-STM32
https://nl.farnell.com/stmicroelectronics/nucleo-f767zi/dev-board-nucleo-32-mcu/dp/2546569

DDS-Demonstrators, Release TechPush

module MatrixBoardData
{

struct Msg
{

long userID; //@key
long traffic;
string message;

};
#pragma keylist Msg userID

};

This example creates a module where the wanted data types can be stored in. A struct is used for the message within
the module. This message can be send using DDS. Three different variables are being stored in this message, two long
types and one string type. These are general types which will be converted to a language specific type (string will for
example be converted to a char * in C).

The #pragma keylist Msg userID defines the key of the message. A key groups the message into a certain
category. In the DDS matrix board application, the key is the ID of a unique matrix board. This #pragma method
is used for defining a key value within an OMG-DDS type structure. long userID also has //@key behind the
variable. This is not used in the DDS application but is added for interoperability with the RTI definition.

Links

• Information about defining the key within an IDL header: https://stackoverflow.com/questions/31548067/
what-does-pragma-keylist-keyword-do

Quality Of Service

authors Joost Baars

date Feb 2020

Description

The Quality of Service (QoS) policies are a set of configurable parameters that control the behavior of a DDS system
(how and when data is distributed between applications). Some of the parameters can alter the resource consumption,
fault tolerance, or the reliability of the communication.

Each entity (reader, writer, publisher, subscriber, topic, and participant) of DDS has associated QoS policies to it.
Some policies are only for one entity, others can be used on multiple entities.

More information about the QoS policies as well as a list of existing DDS policies can be found in the Links.

QoS findings

Different tests and measurements are done regarding the Quality of Service policies. The “General findings” explain
some findings that were found while experimenting with the Quality of Service policies. There are some quick perfor-
mance tests executed on the round trip and flood demonstrator (roundtrip demonstrator explanation: RoundTrip). The
results (“Quick performance tests”) and the software of the application (“Quick performance tests software”) can be
found in the list below. The “Matrix board performance measurements” are measurements with different QoS policies
in the matrix board demonstrator (matrix board explanation: Matrix Board Communication). These measurements
contain the connect/disconnect duration and resource usage. See the page below for more information.

1.2. Main Table of Content 109

https://stackoverflow.com/questions/31548067/what-does-pragma-keylist-keyword-do
https://stackoverflow.com/questions/31548067/what-does-pragma-keylist-keyword-do

DDS-Demonstrators, Release TechPush

General findings

authors Joost Baars

date Feb 2020

Description

This page shows the general findings regarding the QoS policies.

Performance

The dds_write function is around twice as fast with a static message (a message that stays the same) compared to
a message that is changing after each write. A struct was sent using DDS containing 3 parameters. It did not seem to
matter how much data was changed in the struct. If the struct was changed (even only one byte), the execution time of
the write function would be around twice as slow. The execution time of one write action was measured in this setup
(the average of 10k measurements). The average result was around 8500 nanoseconds for a static message and around
16000 nanoseconds for a changing message. These measurements are not reliable though but it shows that there is a
clear difference between the two configurations.

Liveliness of DDS objects

The liveliness on a topic can be requested using a function call dds_get_liveliness_changed_status() if
the liveliness callback QoS is configured with NULL. The liveliness can also be configured to call a callback function
as soon as the liveliness changes. This liveliness callback is called when a writer connects to the topic (also if the
writer is part of the same participant). The liveliness callback is not called for readers. Therefore, the number of active
readers on a topic cannot be detected.

CycloneDDS missing features

• The DDS extension for the QoS Database policy

• Asynchronous publisher does not seem to be implemented (possibly done automatically for you)

Quick performance tests

authors Joost Baars

date Mar 2020

Description

This page shows the results of the performance tests for QoS policies within DDS. The setup of the tests is added. The
tests are not 100% reliable. These tests are not performed on a real-time OS.

Most of the tests are executed on the round trip application. The most thorough test is also executed on the flood
application.

110 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

Round trip

This chapter contains measurements of the QuickQoSMeasurements for different QoS configurations with the round
trip application. The result of each measurement is in microseconds. This time is the time needed for one ping in the
round trip. So if there are 3 devices in the round trip, and the round trip takes 600 microseconds. Then the result of
the test would be 600 / 3 = 200 microseconds (per ping).

Setup 1

Setup: 2 Raspberry Pi’s communicating using DDS through a modem. The Pi’s are connected using ethernet. The
modem is not connected to the internet. A laptop starts the applications using SSH.

These results are in microseconds per ping. The settings are applied on the writer and the reader.

Settings TEST 1 TEST 2
default 400 389
deadline 395 392
destination order reception 387 385
destination order source 386 387
durability persistent 389 385
durability transient 386 384
durability transient local 382 380
durability volatile 387 390
lifespan 10ms 398 399
lifespan 100ms 398 394
liveliness automatic 392 390
liveliness manual by participant 390 386
liveliness manual by topic 388 385
ownership shared 387 387
ownership exclusive 389 385
data lifecycle qos id 387 389
data lifecycle qos id 392 385
reliability best effort 358 355
reliability reliable 386 389
durability transient with durability service 1s 386
durability transient with durability service 10ms 392
history all 387
history keep last 386

Test 1: Default QoS settings with the tests Test 2: Reliability reliable default on

There is definitely a difference between the reliability configurations. There is a small overhead with the lifespan.
Everything seems to have a small overhead. The durability transient does not have overhead compared to this one.
The others do.

Setup 2

These next measurements are performed with a laptop containing an Intel i5 8th generation processor with a Raspberry
Pi 3 model B containing a fresh Raspbian Buster Lite (13-03-2020) install. The laptop was connected to a power outlet
and did not have active background processes.

1.2. Main Table of Content 111

DDS-Demonstrators, Release TechPush

Both devices were connected to the network with an ethernet cable. The laptop had an USB 2.0 to Ethernet converter
in between. There is around 17 meter of ethernet cable between the devices. Additionally, a router is also in between
the 2 devices. The router is connected to the internet. Additionally, the router is used by other devices for internet too.
Therefore, it could cause some overhead.

The test that was executed: the “slave” of the round trip was running on the Raspberry Pi. The “master” was running
on the laptop. There only were 2 devices in the round trip. Each measurement was the average of 500 round trips.

settings TEST 1 TEST 2 TEST 3
default 512 521 508
deadline 540 542 531
destination order reception 525 538 525
destination order source 521 534 533
durability persistent 514 543 537
durability transient 534 536 538
durability transient local 513 539 519
durability volatile 524 521 539
lifespan 10ms 522 540 535
lifespan 100ms 534 535 508
liveliness automatic 534 528 542
liveliness manual by participant 518 543 536
liveliness manual by topic 519 529 514
ownership shared 532 536 540
ownership exclusive 535 523 540
data lifecycle qos id 535 540 540
data lifecycle qos id 499 533 540
reliability best effort 521 540 529
reliability reliable 535 534 537
durability transient with durability service 1s 523 530 519
durability transient with durability service 10ms 535 533 536
history all 535 536 536
history keep last 531 534 509

Test 1: Default configuration
Test 2: Every test has RELIABILITY_BEST_EFFORT except for the reliability reliable
Test 3: Every test has RELIABILITY_RELIABLE except for the reliability best effort

The data from the table is visualized in a graph. The graph below shows the three test columns from the table.

112 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

Interesting results: Between test 2 and 3, the differences are not noticable. Some tests even went noticably faster on
test 3. Although, I would expect that test 3 would be noticably slower compared to test 2. Because reliability reliable
should be slower and is mostly slower when directly compared. This difference could be due to background processes
that interfered with the tests.

Just for reference, I compared the performance on ethernet with the performance on WiFi. Time with both devices on
ethernet: ~1200 (lot of deviation, measurement of ~1700 and ~1000) microseconds. Time with the RPi on ethernet
and the laptop on WiFi: ~525 microseconds (measurement of ~500 and ~540, much less deviation)

Setup 3

This setup is the same as setup 2. But this setup contains (much) more measurements.

settings TEST 1 TEST 2 TEST 3 TEST 4 TEST 5 TEST 6 TEST 7 AVERAGE AVERAGE 2
default 539 534 508 528 526 525 515 525 518
deadline 537 540 508 532 502 530 535 526 527
destination order reception 538 518 525 521 500 500 525 518 518
destination order source 531 534 508 519 526 518 503 520 524
durability persistent 533 529 525 527 491 533 509 521 517
durability transient 535 514 531 528 520 533 479 520 521
durability transient with durability service 1s 535 508 523 531 529 531 510 524 517
durability transient with durability service 10ms 524 532 525 527 530 502 506 521 527
durability transient local 531 502 519 520 520 533 528 522 521
durability volatile 537 530 498 522 524 529 501 520 524
lifespan 10ms 520 536 506 522 529 538 528 525 528
lifespan 100ms 538 519 522 511 532 517 545 526 532

Continued on next page

1.2. Main Table of Content 113

DDS-Demonstrators, Release TechPush

Table 1 – continued from previous page
liveliness automatic 529 518 506 506 507 512 513 513 512
liveliness manual by participant 538 534 527 524 522 531 530 529 526
liveliness manual by topic 539 534 521 504 528 528 527 526 521
ownership shared 563 531 523 524 528 529 503 529 518
ownership exclusive 537 537 527 523 528 532 519 529 523
data lifecycle qos id 533 508 500 524 528 523 533 521 513
data lifecycle qos id 512 467 502 520 526 529 531 512 516
reliability best effort 508 498 506 518 528 518 524 514 512
reliability reliable 533 532 506 506 533 526 500 519 524
history all 532 505 517 506 493 510 516 511 520
history keep last 536 522 525 505 526 526 507 521 521
latency budget 1000ms 539 524 525 524 500 534 527 525 514
latency budget 10ms 534 508 527 520 500 524 526 520 519
latency budget 10ms 535 534 504 502 494 524 528 517 515
presentation topic 525 534 526 512 507 499 529 519 518
presentation group 535 535 500 517 509 525 520 520 509
presentation instance 537 505 530 514 500 505 526 516 519
resource limits 528 532 525 488 522 516 531 520 519
time based filter 1s 538 534 499 525 528 525 533 526 524
time based filter 10ms 531 526 515 524 495 528 528 521 521
transport priority of 1 536 498 521 524 529 518 531 522 522
transport priority of 100 517 511 524 525 511 526 528 520 520
writer data lifecycle true 506 535 529 509 529 526 530 523 519
writer data lifecycle false 537 529 525 522 520 525 519 525 523
partition 537 511 521 521 527 537 534 527 515
AVERAGE 532 522 517 518 517 523 521 AVERAGE AVERAGE 2
AVERAGE 2 523 527 520 510 517 522 520

Test 1: Default configuration
Test 2: Every test has reliability reliable
Test 3: Every test has reliability best effort
Test 4: Every test has reliability best effort with DDS durability transient local
Test 5: Every test has reliability best effort with DDS durability volatile
Test 6: Every test has reliability reliable with DDS durability transient local
Test 7: Every test has reliability reliable with DDS durability volatile

The data from the table is visualized in graphs. The graph below shows the two average columns from the table.

114 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

The graph below shows the two average rows from the table.

The AVERAGE 2 are the average measurements of a second execution of the same measurements. These are included
for comparing accuracy.

1.2. Main Table of Content 115

DDS-Demonstrators, Release TechPush

The graphs clearly show a lot of deviation between the average measurements. The average of the first test should be
about the same as the average of the second test. The biggest deviation is about 2.3% or 12 microseconds.

Conclusions between the tests:

The reliability reliable is clearly a bit slower compared to the reliability best effort. The durability kinds do not seem
to differ a lot. It seems that durability transient local is a bit slower. This can also be because the tests are not accurate
enough (if you compare the results with AVERAGE 2).

Conclusion between different QoS policies:

• Lifespan causes some noticable overhead.

• Liveliness automatic seems to be faster compared to manual liveliness.

• Ownership also seems to give some overhead.

• History keep all/keep last, keep last seems to be slower.

For the rest, I don’t see really interesting data.

Setup 4

This setup focusses on a reliable test without much deviation. This is not 100% possible because the OS used is not a
real-time OS.

This setup uses 2 Raspberry Pi’s with each a clean install of Raspbian Buster 13-03-2020. The Raspberry Pi’s used
are a Raspberry Pi 2 model B and a Raspberry Pi 3 model B.

These Raspberry Pi’s only have the necessary dependencies installed.

The setup can be found in the image below. All devices are connected using ethernet cables.

This setup contains a controlled network with no influence of other devices. The laptop is connected to both devices
using SSH. This laptop also executed the application on the Raspberry Pi’s (by SSH).

The Raspberry Pi 3 model B plus was the master with ID = 1.

settings 1 2 3 4 5 6 7 8 9 10 11
default 355 324 327 310 332 347 328 340 333 334 0

Continued on next page

116 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

Table 2 – continued from previous page
deadline 10s 346 346 338 334 337 345 364 346 344 341 11
deadline 10ms 344 348 340 329 343 346 346 346 343 343 10
destination order reception 338 328 327 312 328 325 324 349 329 330 -4
destination order source 339 334 334 318 329 325 334 342 332 332 -1
durability persistent 337 329 333 332 329 324 329 347 332 333 -1
durability transient 344 329 336 329 334 329 336 344 335 334 2
durability transient with durability service 1s 343 328 330 332 327 327 327 348 333 331 0
durability transient with durability service 10ms 343 335 333 335 323 333 333 342 335 334 2
durability transient local 334 329 323 323 317 327 330 333 327 323 -6
durability volatile 344 334 336 331 337 323 328 337 334 331 1
lifespan 10ms 357 349 346 329 343 349 347 354 347 346 14
lifespan 100ms 347 345 339 331 346 345 351 352 344 349 11
liveliness automatic 10ms 352 334 339 328 341 333 331 345 338 335 5
liveliness manual by participant 10ms 343 333 335 320 339 333 327 343 334 333 1
liveliness manual by topic 10ms 339 326 338 316 337 331 338 346 334 334 1
ownership shared 345 328 328 312 333 323 326 343 330 333 -3
ownership exclusive 342 334 337 311 331 323 330 347 332 331 -1
data lifecycle qos id 1s 341 324 333 315 334 327 329 349 332 331 -1
data lifecycle qos id 10ms 334 328 327 317 330 327 328 341 329 331 -4
reliability best effort 335 330 329 322 332 323 333 333 329 330 -4
reliability reliable 334 334 333 333 327 329 335 338 333 328 0
history all 346 326 325 319 335 350 329 340 334 331 1
history keep last 343 331 332 316 329 328 333 343 332 333 -1
latency budget 1000ms 336 326 324 311 329 327 323 340 327 331 -6
latency budget 10ms 342 326 330 316 336 326 334 347 332 331 -1
presentation topic 336 329 337 323 329 328 331 340 332 335 -1
presentation group 346 334 331 315 333 335 345 340 335 331 2
presentation instance 344 324 333 316 331 327 332 339 331 329 -2
resource limits 347 332 334 319 334 324 333 339 333 334 0
time based filter 1s 336 324 324 316 326 327 329 348 329 332 -4
time based filter 10ms 346 335 329 319 330 328 326 340 331 331 -2
transport priority of 1 345 335 334 317 328 334 350 338 335 333 2
transport priority of 100 343 334 323 320 324 322 336 344 331 331 -2
writer data lifecycle true 343 328 326 312 329 326 335 347 331 331 -2
writer data lifecycle false 342 327 337 312 327 328 338 348 332 333 -1
partition 345 327 328 311 333 324 328 340 330 332 -3
high performance combination 318 311 323 317 316 316 316 315 316 317 -17
high overhead combination 354 357 358 355 354 353 357 358 356 352 23
AVERAGE 342 332 332 321 332 331 334 343
AVERAGE 2 343 331 332 321 332 333 332 342

1: Test 1: Default QoS policies
2: Test 2: Reliability reliable
3: Test 3: Reliability best effort
4: Test 4: Reliability best effort + durability transient local
5: Test 5: Reliability best effort + durability volatile
6: Test 6: Reliability reliable + durability transient local
7: Test 7: Reliability reliable + durability volatile

1.2. Main Table of Content 117

DDS-Demonstrators, Release TechPush

8: Test 8: Default QoS policies
9: Average of the shown measurements
10: Average of a second measurement with the same tests (for accuracy)
11: The difference between the default (top) value and the first average (column 9)

The data from the table is visualized in graphs. The graph below shows the two average columns from the table. The
accuracy of the measurements is the difference between Average 1 and Average 2.

The difference row can be seen in the graph below. This graph clearly shows what QoS policies are faster / slower
compared to the default QoS.

118 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

The graph below shows the two average rows from the table. The accuracy of the measurements is the difference
between Average 1 and Average 2.

The AVERAGE 2 are the average measurements of a second execution of the same measurements. These are included
for comparing accuracy.

The high performance combination from the tests:

1.2. Main Table of Content 119

DDS-Demonstrators, Release TechPush

• History keep last

• Reliability best effort

• Ownership shared

• Durability transient local

• Presentation instance

The high overhead combination from the tests:

• History keep all

• Reliability reliable

• Ownership exclusive

• Lifespan 10ms

• Deadline 10ms

• Liveliness automatic 10ms

• Latency budget 1s

The graphs clearly show that there is not a lot of deviation between the average measurements. This is definitely the
case if you compare it with Setup 3. The worst deviation is 5 microseconds or 1.4%. Which is around 40% accuracy
gain compared to Setup 3.

Most of the measurements don’t have interesting results. There are a few measurements with noticable overhead.

Interesting results from column 9 and 10:

• deadline 10s (noticable overhead)

• lifespan (10 and 100ms) (noticable overhead)

• durability transient local (better performance)

• Liveliness automatic (small overhead)

Interesting results from the AVERAGE rows:

• Test 1 and 8: Much overhead for the default QoS policies

• Test 4: Performance gain

It would be interesting to see why the default QoS policies cause more overhead compared to other configurations.

The liveliness has a minor overhead compared to the other measurements. I would expect more overhead because
DDS intances must ping every 10ms that they are alive.

The lifespan is the lifespan of a message. Therefore, messages that exceed the lifespan are removed from the DDS net-
work. These checks cause noticable overhead. 10 or 100ms lifespan does not seem to matter a lot. RTI documentation
says that this QoS policy should not significantly impact the use of resources.

The deadline is the maximum time between writing a new value for the writer and between reading new messages for
the reader. These checks seem to cause rather much overhead.

For the durability, according to RTI’s documentation, the durability volatile should cause the least overhead. That
is because this one does not save / deliver old samples. Transient local saves and delivers messages as long as the
writer exists. This means that the implementation of saving probably causes less overhead compared to not saving (or
removing?).

I would expect that the reliability QoS would be noticable. But during these tests, there is no noticable difference.
The reliability QoS policy configures if messages should be reliably received. If so, it checks if the message is
correctly received by the reader. If the message is not correctly received, then it is resend. Therefore, I would expect

120 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

that this would cause noticable overhead like Setup 1. Setup 1 is less reliable though because of less measurements.
Additionally, it could differ because of the set-up (different routers, different OS).

I think the other QoS policies don’t have to cause overhead. So those results are all as expected.

Flood

The same test is performed with flood instead of round trip. This test was a bit harder to execute because some QoS
configurations could not reliably be executed.

The numbers that are given are in microseconds per message for the flood. This test was executed with 2 different
devices in the flood loop.

The following tests were removed compared to the round trip:

• Reliability best effort (unreliable communication what resulted in lost messages)

• Lifespan 10ms (Some messages took longer to be received and therefore were removed, what resulted in
lost messages)

• History keep last (This one would probably still work, but was removed because messages may not be lost)
(this one was still active in the high performance test)

• Resource limits (the resource limits was set-up so only the last 5 messages in the buffer exist. The rest was
removed. This resulted in lost messages)

The test setup was the same as Setup 4. The only difference was that the Raspberry Pi 2 model B was the master
instead of the Raspberry Pi 3 model B.

settings TEST 1 TEST 2 TEST 3 AVERAGE 1 AVERAGE 2 AVERAGE 3
default 154.3 104.3 154.8 137.8 166.4 134.2
deadline 10s 105 107.3 107.9 106.8 120.9 104
deadline 10ms 124.1 127.8 126 126 148.9 145.5
destination order reception 103.7 177.4 116.6 132.6 101 105.1
destination order source 106.4 105.4 106.8 106.2 109.8 105.5
durability persistent 168.5 103.8 152.3 141.6 117.9 133.3
durability transient 106 106.4 104 105.5 116.5 106.3
durability transient with durability service 1s 105.6 105.7 106.3 105.9 121 104.6
durability transient with durability service 10ms 105.8 104.3 102.9 104.3 118.7 120.5
durability transient local 105.1 175.7 105.5 128.8 101.5 101.6
durability volatile 105.7 106.1 105.5 105.8 140 133
lifespan 100ms 162.9 107.7 178.5 149.7 103.6 122.8
liveliness automatic 10ms 105.2 178.5 103.4 129.1 118.4 108.4
liveliness manual by participant 10ms 107.3 109.2 107.5 108 121.8 119.2
liveliness manual by topic 10ms 107.8 108.4 107.1 107.7 103.6 102.8
ownership shared 105.5 114.8 104.8 108.4 116.6 117.2
ownership exclusive 105.2 110.8 105.8 107.3 129.4 102.1
data lifecycle qos id 1s 154.2 155.4 154.3 154.6 108.1 122.7
data lifecycle qos id 10ms 177.8 106.6 151.8 145.4 125.4 114.5
reliability reliable 114.7 106.5 111.8 111 101 104.1
history all 104.4 114.3 108.2 109 116.5 113.1
latency budget 1000ms 112.7 115.9 106.7 111.8 116 101.3
latency budget 10ms 225.3 157 120.1 167.5 100.3 128.6
presentation topic 105.5 117.1 154.4 125.7 104.1 132.4
presentation group 112.9 105.8 103.3 107.3 125.1 100.3

Continued on next page

1.2. Main Table of Content 121

DDS-Demonstrators, Release TechPush

Table 3 – continued from previous page
presentation instance 105.7 105.7 105.6 105.7 121.8 124.3
time based filter 1s 105.5 146.4 105.5 119.1 119.3 101.7
time based filter 10ms 114.9 104.4 104.2 107.8 103.8 129.9
transport priority of 1 153.2 105.3 149.7 136.1 100.4 122.5
transport priority of 100 105.9 106.5 113.5 108.6 104.4 104.3
writer data lifecycle true 104.7 112.4 104.8 107.3 143.4 117.4
writer data lifecycle false 105.3 145.7 105.7 118.9 125.8 116.6
partition 112.7 107.8 106.7 109.1 106.5 116.4
high performance combination 112.4 112.5 145.5 123.4 100.4 139.5
high overhead combination 255.3 146 139.5 180.3 152.6 124.6
AVERAGE 1 124.8 120.7 119.6
AVERAGE 2 120.6 116.5 117
AVERAGE 3 116.2 116.6 117

Test 1: Reliability reliable
Test 2: Reliability reliable with durability transient local
Test 3: Reliability reliable with durability volatile

The average columns are visualized in the graph below.

AVERAGE 1 is the average of the non-average values that are in the table.
AVERAGE 2 and 3 are results of different executions of the same test. They are added for accuracy comparison.

There is a lot of deviation between the average results. Mainly for the accuracy of the rows. This can easily be seen in
the graph (the Average 1, Average 2 and Average 3 should be around the same height). The biggest deviation
is about 67 microseconds or about 60%! For that reason, these measurements are difficult to reliably analyze.

122 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

Quick performance tests software

authors Joost Baars

date Mar 2020

Description

This page contains information about the quick performance tests that were implemented for the round trip and flood
in C++. The goal of these measurements was to analyze the performance of different QoS policies in various configu-
rations.

The software for the quick performance tests can be found in the directory src/demonstrators/RoundTrip/
C++/PerformanceMeasurements/QuickQoSMeasurements/.

Dependencies

The dependencies necessary for succesful compilation of the quick performance measurements in C++ are the follow-
ing:

• CMake

• C++17 compiler (Gcc 7+ for example)

• Cyclone DDS library

Configuration

The performance tests implementation contains an implementation for the round trip application and one for the flood
application. One of these implementations can be chosen before building the project.

The implementation can be configured by altering the following line in the CMakeLists.txt:

Choose the wanted configuration
Config parameter: can be configured for building the wanted performance test
This can be "roundtrip" or "flood"
set(PROJECT roundtrip)

This line can be found at the top of the CMakeLists file. The roundtrip can be changed to flood for the flood
implementation.

Building

The software can be build by executing the following commands in the command line (you should be in the main
directory of the application! See Description for the directory)

mkdir build && cd build
cmake ..
make

These commands compile and create the executable for the performance measurements.

1.2. Main Table of Content 123

DDS-Demonstrators, Release TechPush

Execution

The application must be executed using various parameters. The application can be executed using the following
command:

./<Application name> <device ID> <number of devices> <total messages / round
→˓trips> <filename for storing measurements>

<Application name>: The application you want to run, this can be
performance_measurements_flood or performance_measurements_roundtrip
<device ID>: The ID of the device, must be unique, > 0 and <= total devices
<Total devices>: The amount of devices in the loop (the amount of applications running)
<Total msg / round trips>: For the flood application: Total messages send. For the round trip: Number of
round trips to execute
<filename>: Optional, can be configured to change the default measurements file name. By default:
measurements.csv.
The results are comma separated and appended to the file. Therefore, the measurements are not nicely formatted in
the file.

The following example starts 4 nodes for the round trip. The slaves of the round trip are started in the background.
Only the master is started in the foreground in this example. Each device pings a total of 1000 times. Therefore, there
are 1000 round trips. The measurements of this test are stored in the file test1.csv

./performance_measurements_roundtrip 2 4 1000 & ./performance_measurements_
→˓roundtrip 3 4 1000 & ./performance_measurements_roundtrip 4 4 1000 &
./performance_measurements_roundtrip 1 4 1000 test1.csv

A description of the parameters can also be found when executing the application with no or incorrect parameters.

Note: Execution of the program

The round trip is initiated by the device with <device ID> = 1. Therefore, <device ID> = 1 should always be started
after the other ID’s are started.

The devices added with <device ID> must be an increment of the previous one. This function does not dynamically
search for the next device! So if there are three devices, device 2 and 3 should be started first. Afterwards, device 1
can be started.

The <total msg / round trips> parameter should be the same for each application.

Software

The application is written with customizability and ease of use in mind. Therefore, it is rather easy to create new tests.
This chapter explains how tests can easily be added to the software. The round trip won’t be explained, because it is
already explained in the Round trip in C++.

124 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

Class structure

The class structure is shown in the image below. The PerformanceTests class executes the wanted tests. In this
class, the correct configuration can be set-up for the flood / round trip application.

The Flood / RoundTrip class is only locally created in the executeTest() function in the
PerformanceTests class. This is done so the tests are performed in a clean Flood / RoundTrip object.
The QoSManager object is given to the Flood / RoundTrip class as a pointer.

The Configurations class is a fully static class with static configuration functions inside. These static functions
are configured in the PerformanceTests class and are executed in the Flood / RoundTrip class.

The performance measurements are only executed in the Flood / RoundTrip class. These results are
requested by the PerformanceTests class (the executeTest() function) and stored in a file by the
MeasurementsFile class.

Configurations

In the configurations class, new configurations regarding QoS policies can be added. They can be implemented with
one configuration parameter.

The function must have the following structure in the header file:

1.2. Main Table of Content 125

DDS-Demonstrators, Release TechPush

static void <function name>(dds_qos_t *qos, dds_listener_t *listener, const
→˓int64_t configuration = 0);

This is a function structure that is used for every configuration. This makes it easy to select different configurations
from the PerformanceTests class.
The <function name> tag should of course be changed to the wanted function name.

The C++ file must contain the configuration itself. This is an example of the reliability QoS policy in the
Configurations class:

void Configurations::reliability(dds_qos_t *qos, dds_listener_t *listener, const
→˓int64_t configuration) {

// DDS_RELIABILITY_BEST_EFFORT or DDS_RELIABILITY_RELIABLE
dds_qset_reliability(qos, static_cast<dds_reliability_kind_t>(configuration), DDS_

→˓SECS(10));
}

The configuration is an int64_t because almost all parameters can be safely converted to this type. Because of this
design choice, the configuration should first be converted to the correct enum type for the reliability.

Adding performance measurements

The QoS policies are configured using a QoSRoundtrip class. This class manages the default and custom QoS policies
for each test.

A QoS policy can be configured using the following code:

QoSRoundtrip::QoSFunction configDefault;
configDefault(Configurations::reliability, DDS_RELIABILITY_BEST_EFFORT);

This is a struct containing the reliability test from the Configurations class with the configuration for that func-
tion. In this case, the configuration is DDS_RELIABILITY_BEST_EFFORT.

You can create as many of these configurations as you want.

The QoSRoundtrip class manages the QoS policies. More information can be found in Explanation of QoSRoundtrip.
The configuration structures above should be configured with the QoSRoundtrip class.

Default configuration

If you want to change the configuration for a set of tests, the default configuration in the QoSRoundtrip class must
be changed.

An example is given for a default test below. This executes the qosPolicyTests() with the reliability set to reliable and
the durability to transient local.

These settings will be active with each test in the qosPolicyTests() except if the setting is overwritten by a
custom configuration.

QoSRoundtrip::QoSFunction configDefault, configDefault2;

configDefault(Configurations::reliability, DDS_RELIABILITY_RELIABLE);

(continues on next page)

126 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

(continued from previous page)

configDefault2(Configurations::durability, DDS_DURABILITY_TRANSIENT_LOCAL);

QoSRoundtrip qosConfig; // You must have a qosConfig object
qosConfig.configureDefaultQoS(configDefault, configDefault2);
qosPolicyTests();

The function qosConfig.configureDefaultQoS() accepts as many configurations as you want.

The default configuration can also be reset to the default configuration. This can be done by the following command:

qosConfig.resetDefaultQoS();

Custom Configurations

If you want a configuration to be executed once. You should alter the custom configuration in the QoSRoundtrip
class.

This next codeblock shows how custom configurations are made. These custom configurations are the “master”
configuration. This overwrites the default configuration if they alter the same QoS policy.

The next codeblock assumes that you already have made a QoSRoundtrip object with the name: qosConfig.

QoSRoundtrip::QoSFunction config;
config(Configurations::deadline, DDS_SECS(10));
qosConfig.configure(config);
executeTest("deadline", &_qosConfig);

The codeblock above configures the deadline QoS policy with a configuration parameter of DDS_SECS(10).

The qosConfig object is configured normally (without using configureDefaultQoS()). The
`QoSRoundtrip object containing the wanted QoS policies is given to the executeTest() function with a
custom name.

The executeTest() function needs a string containing the name of the test and the QoSRoundtrip object. This
function executes the round trip and stores the result in a measurements file.

Explanation of QoSRoundtrip

The QoSRoundtrip class controls the QoS policies for the round trip performance measurements. This class con-
tains all the necessary QoS objects.

The class contains the dds_qos_t * for the writer, reader, topic of the writer and the topic of the reader. Addition-
ally, it contains the dds_listener_t * for the listener. Each of these has a custom configuration that is used for
the performance tests. As well as a default configuration that will be copied into the custom configuration before the
custom QoS policies are set-up.

This class also contains the struct that manages the different configurations. This struct is called QoSFunction.

This struct contains a function containing a QoS policy. It must be a function with the format:

void <function name>(dds_qos_t *qos, dds_listener_t *listener, const int64_t
→˓configuration);

1.2. Main Table of Content 127

DDS-Demonstrators, Release TechPush

This struct also contains for what object it is meant. It can be configured that the QoS policy is only configured for
the writer, or for the reader. The applicable() function can be used to set for whom the QoS policies must be
configured.

// This function is part of the QoSFunction struct
void applicable(const bool writer, const bool reader, const bool writeTopic, const
→˓bool readTopic);

The following functions can be executed for configuring the QoS policies:

// Resets the default QoS policies in the class
void resetDefaultQoS();

// Configures the default QoS policies.
void configureDefaultQoS(ConfigFunctions... configFunctions);

// Configures the custom QoS policies
void configure(ConfigFunctions... configFunctions);

The ConfigFunctions must be of type QoSFunctions.

The configure() function overwrites the previously called configure() function. The
configureDefaultQoS() function does not overwrite the previously called configureDefaultQoS()
function. This can only be cleared using the resetDefaultQoS() function.

Measurements

The measurements of each test are appended to a CSV file. This is not a human-readable structure. Therefore, this
chapter explains how to make the results readable relatively fast.

Open the measurements file with Excel. Column A should contain the measurement names and column B the mea-
surements. The current test executes 39 QoS tests with 8 different default configurations. Therefore, a table must be
created with 39 rows and 8 columns.

Place this command in an empty cell: =INDEX($B:$B,ROW(B1)+((COLUMN(B1)-2)*39)).
Then select the square on the right bottom of that cell and select 39 rows and 8 columns with it.

Matrix board performance measurements

authors Joost Baars

date June 2020

Description

The matrix board performance measurements execute performance measurements on the matrix board demonstrator
(see: Matrix Board Communication).

In these measurements, different Quality of Service (QoS) policies are compared with each other. The Matrixboard
demonstrator mainly shows the time it takes for a new device to connect or disconnect using DDS.

The selected QoS policies are the durability, liveliness, lifespan, reliability and the deadline QoS policies (see Quick
performance tests).

128 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

A short description of how the connect and disconnect durations are measured can be seen below (see chapter Connect
duration & Disconnect duration)

An application has been designed for measuring the connect and disconnect duration automatically. This application
and the results of the measurements are explained on the pages beneath. The system configuration shows how to
configure the dependencies of the performance measurements. The performance application page describes the appli-
cation in detail: how the application can be executed as well as how the application works from a technical point of
view. The performance measurement results show the results of the performance measurements of the selected QoS
policies.

Matrix board performance application system setup

authors Joost Baars

date June 2020

Description

The matrix board application often runs on multiple devices for the best results. But those devices must have a synchro-
nized clock to have accurate measurements: the clocks of the devices should be synchronized to <1ms difference. The
precision time protocol (PTP) was chosen for the synchronization between the devices. See Precision time protocol
(PTP) for a description of the PTP protocol.

If the application is executed only on one device, this page can be skipped. This page is not useful if the application is
only executed on one device

Install

The chosen PTP implementation for Linux based system is the PTP daemon (ptpd).

ptpd can be installed using the following command on Debian based systems (for example Ubuntu and Raspbian):

sudo apt-get install ptpd

This command downloads the necessary dependencies and installs ptpd. ptpd can also be installed manually by
following the following install guide: PTPd install guide.

The official GitHub repository of ptpd can be found here: PTPd GitHub repository.

This PTP implementation should also work for FreeBSD, NetBSD, OpenBSD, OpenSolaris and Mac OS X.

Setup

ptpd must run in the background for it to work. There are different methods for achieving this. The ptpd application
can be started manually every time the performance tests are executed. This application must be started on both devices
before the performance application is started! This is the recommended method when the performance measurements
are only executed once or twice. This method is explained in manual execution.

When the performance application will be started more often (like when measuring different configurations), the
method of automatically starting the application could be more convenient. This method only works on certain devices
and takes more work to set-up. This method is explained in systemctl.

1.2. Main Table of Content 129

https://raw.githubusercontent.com/ptpd/ptpd/master/INSTALL
https://github.com/ptpd/ptpd

DDS-Demonstrators, Release TechPush

manual execution

The ptpd application can be started manually. This can be done by executing the command below.

sudo /usr/sbin/ptpd -m -i eth0 &

The ptpd executable is executed with the -m parameter to detect the best active master for time synchronization. The
-i parameter must be configured with the interface where PTP must be active on. In the example, the first ethernet
port was chosen (eth0). By checking ifconfig, the network names can be found. The preferred network should
be chosen. The network name for Wi-Fi is often called wlan0.

When it is running, the system configuration is completed and the performance application can be started. See Ma-
trixboard performance application for starting the performance application.

systemctl

If you have chosen the manual execution, this section can be skipped.

This method uses systemctl and systemd as the boot manager. This boot manager is not installed on every device
and these steps don’t always work for every device. This method is checked with a Raspberry Pi running Raspbian
Buster Lite 2020-03-13 and works for this software. On some configurations, this method does not work, then the
manual execution is recommended.

With systemctl, the initialization of a device can be managed. Services can be configured using systemctl.

sudo nano /lib/systemd/system/ptpd.service

nano can be replaced with an editor of choice. This ptpd.service should not exist on your system, this command,
therefore, creates this file. The following must be inserted to the file:

[Unit]
Description=Ptpd accurate time synchronization
Wants=network-online.target
After=network.target

[Service]
ExecStart=/usr/sbin/ptpd -m -V -i eth0
Restart=always
User=root

[Install]
WantedBy=multi-user.target

This creates a service for systemctl called ptpd (name of the file). The application is automatically restarted
when it crashes.

The ptpd executable is executed with the -m parameter to detect the best active master for time synchronization.
The -V parameter places the application in the foreground (necessary for systemctl) and enables debugging. The
debugging can be seen when executing:

systemctl status ptpd

The -i parameter must be configured with the interface where PTP must be active on. In the example, the first ethernet
port was chosen (eth0). By checking ifconfig, the network names can be found. The preferred network should
be chosen. The network name for Wi-Fi is often called wlan0.

The application must first be enabled to be executed on boot. This can be done using the command:

130 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

sudo systemctl enable ptpd

With this command, the ptpd service is started on boot.

If you don’t restart your device, the service is not started yet. Therefore, the first time you must manually start the
service. This can be done using the command:

sudo systemctl start ptpd

With the status command, the status of the service can be requested. This status command is shown below. The third
line should note: Active: active (running).

systemctl status ptpd

If PTP is successfully running on all devices, then the configuration is done.

More information regarding systemd and systemctl can be found here: systemctl/systemd basics.

Note: Time zone

Make sure the time zone is the same for both devices because otherwise the time synchronization won’t work correctly.

Note: ptpd service

This service relies on the network and may only start after the network is configured. Therefore, it could also not
work on systems with systemd installed. Then, the application should be started after a different service. The ptpd
service can also be started manually upon boot using systemctl restart ptpd. More information regarding
systemd and systemctl can be found here: systemctl/systemd basics.

Precision time protocol (PTP)

PTP is a method to synchronize devices over a local area network (LAN). PTP should be capable of synchronizing
multiple clocks to less than 100 nanoseconds on a network. PTP works best with hardware timestamping but a
network card capable of hardware timestamping is necessary for this. The device that is used for the performance
measurements in Matrix board performance measurements is the Raspberry Pi. This microcomputer does not have
hardware timestamping and is therefore limited to software timestamping. Synchronization of ~10 microseconds
should be doable but 10-100 microseconds is typical for software timestamping with PTP (according to PTP general
information).

This data originates from the following source: PTP general information.

NTP

NTP was also researched for time synchronization between multiple local devices. NTP should also be able to do
<1ms synchronizing on local networks. But the setup was more difficult because an NTP server had to be created.
NTP was also unstable on the Raspberry Pi (sometimes it stopped running or stopped finding the correct time). This
was probably due to that the Raspberry Pi contains timesyncd by default for time synchronization, but ntpd was
necessary to run an NTP server (timesyncd is only for NTP clients). timesyncd and ntpd cannot run together,
and that gave issues configuring it.

1.2. Main Table of Content 131

https://endruntechnologies.com/pdf/PTP-1588.pdf
https://endruntechnologies.com/pdf/PTP-1588.pdf
https://endruntechnologies.com/pdf/PTP-1588.pdf

DDS-Demonstrators, Release TechPush

Links

• Hardware timestamping

• PTP general information

• PTPd GitHub repository

• PTPd install guide

• More information about Systemctl

Matrixboard performance application

authors Joost Baars

date June 2020

Description

This performance application is made for the matrix board demonstrator (see: Matrix Board Communication). The
C++ matrix board implementation is used within this application (see: Matrix Board Communication in C++).

This page describes how the performance application works. The first sections focus on installing and executing
the performance application. By following the steps below, the performance measurements can be repeated. After the
section for executing the application, the application itself is explained (see Performance application). The last section
explains how more tests can be added (see Add/remove performance tests).

General information about the application

The performance application executes an external matrix board application. The matrix board application must, there-
fore, be compiled first. A different matrix board application is created for each different QoS configuration.

The steps necessary to execute the performance application are described on this page.

The different created configurations for the matrix board communication can be found in:
src/demonstrators/MatrixBoard/C++/performance_measurements/
custom_matrixboards/.

The performance application can be found in:
src/demonstrators/MatrixBoard/C++/performance_measurements/
performance_application/.

Dependencies

The necessary dependencies for succesful compilation of the matrix board application in C++ are the following:

• CMake

• C++17 compiler (Gcc 7+ for example)

• Cyclone DDS library

132 Chapter 1. Measure & Blog

https://license.fsmlabs.com/docs/advanced/advanced_hwstamps.html
https://endruntechnologies.com/pdf/PTP-1588.pdf
https://github.com/ptpd/ptpd
https://raw.githubusercontent.com/ptpd/ptpd/master/INSTALL
https://www.linode.com/docs/quick-answers/linux-essentials/introduction-to-systemctl/

DDS-Demonstrators, Release TechPush

Installing Cyclone DDS and the other dependencies can be found in: Clean Install with internet.

Compiling the matrix board applications

Start by going to the custom matrixboards directory:
src/demonstrators/MatrixBoard/C++/performance_measurements/
custom_matrixboards/.

This directory contains the different QoS implementations for the matrix board application. These configurations
should all be built separately into an application.

Create a build folder for building the custom matrix boards (do this within the custom_matrixboards directory)
and enter it. This can be achieved using the following command:

mkdir build && cd build

Each of the custom configurations can then be built using the command:

sh ../build_all.sh

This is a shell script that builds all the different configurations.

Note: Manual compilation

The shell script builds all the different configurations. Building these configurations can also be done manually by
building every matrix board application one by one. Manual compilation is not advised as it takes more time and is
more prone to errors.

Manually, each configuration can be built with the commands:

cmake -D CUSTOM_MBC=<custom configuration name> .. && make -j4

In this command, <custom configuration name> should be replaced by the desired configuration. For the
default performance application, each configuration in the custom_matrixboards directory should be compiled.

The CUSTOM_MBC CMake parameter defines what application is being compiled.

Compiling the performance application

Go to the performance application directory:
src/demonstrators/MatrixBoard/C++/performance_measurements/
performance_application/.

Then create a build folder for building the performance application and enter it:

mkdir build && cd build

1.2. Main Table of Content 133

DDS-Demonstrators, Release TechPush

The performance application can then either be built for the slave or the master. There should only be one master
application active at the same time. There may be multiple slaves active.

The master application can be built with the following command:

cmake -D PERFORMANCE_ACTOR=Master .. && make -j4

The slave application can be built with the following command:

cmake -D PERFORMANCE_ACTOR=Slave .. && make -j4

Executing the performance application

The master performance application can be executed with various parameters. These parameters will be explained in
this section. The slave application will also be described.

Both these applications give information about their parameters when executed with no parameters. So when you
forget the parameters, execute the application without parameters.

The directory where the commands from this section are executed from is:
src/demonstrators/MatrixBoard/C++/performance_measurements/
performance_application/,
unless specified otherwise.

The page Example performance application contains an example for running this application.

Note: Synchronization

For the application to work correctly on different devices, the time should be synchronized. Synchronizing the time is
explained on the page: Matrix board performance application system setup.

Slave

The slave application can be executed using the following command:

./Slave <MatrixBoard ID>

• MatrixBoard ID: The ID/position of the matrix board

The slave application must be executed before the master application. Multiple slave applications can be executed at
once. The connect and disconnect durations are measured for each slave. The lowest, average, and highest values are
stored in the logging file.

Master

Only one parameter for the master application is necessary. That’s the matrix board ID. The application can be
executed using the following command:

./Master <MatrixBoard ID> <Name of logging file> <Execution amount> <Application
→˓Location> <Application name>

134 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

• MatrixBoard ID: The ID/position of the matrix board

• Name of logging file: OPTIONAL: the name of the logging file, by default: logging.csv

• Execution amount: OPTIONAL: The number of executions each configuration has, by default: 4

• Application location: OPTIONAL: the location containing the matrix board applications, by default: ../../
custom_matrixboards/build/

• Application name: OPTIONAL: By default, all custom matrix board applications are executed. With this
parameter, you can only measure one custom application. For example default for the default configuration.

Note: Execution of the program

The slave applications must be started first!

The <Matrixboard ID> parameter should be unique for every matrix board. Additionally, it may not be less than 1.

The order at which matrix boards and their associated IDs are started does not matter.

If the logging file exists already, the new data is appended to the existing data.

The application location should include all executables for the matrix boards that are used by the
TestsImplementation class. This is by default all of the applications in the custom_matrixboards di-
rectory as well as the default configuration. Each of these can be build using the shell script build_all.sh in the
custom_matrixboards directory (see Compiling the matrix board applications).

Example performance application

An example of starting the performance application is given in this section.

Execute the slave first. Start it with the command below.

./Slave 1

Now, a master can be started in a new terminal to see the performance application going.

./Master 4

The default configuration executes each test only four times. When both the master and slave stop running, the
performance test is done. The results can be seen by executing:

cat logging.csv

This shows all the results. See CSV output for an explanation of how the logging can be interpreted.

CSV output

The output of the performance application is a CSV (comma-separated value) file. When a custom matrix board
application is executed, the name is stored in the CSV file.

A separate page is written for analyzing this data and automatically calculating the average values for each configura-
tion (if the execution amount is >2). See: Performance measurements data analysis.

The paremeters are shown in the following three tables. The first 3 parameters of the measurements:

1.2. Main Table of Content 135

DDS-Demonstrators, Release TechPush

1st 2nd 3rd
Lowest connect duration Average connect duration Highest connect duration

These parameters are for the connect duration. The connect duration of all devices that connect to the master’s matrix
board topic are measured. The lowest, average and highest values are stored (1st, 2nd and 3rd parameter).

The second 3 parameters of the measurements:

4th 5th 6th
Lowest disconnect duration Average disconnect duration Highest disconnect duration

These parameters are for the disconnect duration. The disconnect duration of all devices that disconnect from the
master’s matrix board topic are measured. The lowest, average, and highest values are stored (1st, 2nd, and 3rd
parameter).

The last 3 parameters of the measurements:

7th 8th 9th
CPU usage [%] Physical memory usage [kB] Virtual memory usage [kB]

These parameters are for the resource usage. The CPU usage, physical memory usage, and physical memory usage
are measured. These measurements are all executed on the master’s matrix board application.

Note: All these parameters are written on the same line!

Matrix board application

The matrix board application is the same as is described in Matrix Board Communication in C++. This application
has, by default, debugging built-in. The debugging sends a timestamp to the Debug topic. At the following moments,
a timestamp is sent:

• When the matrix board connects to a matrix board topic

• When a matrix board connects to its own topic

• When a matrix board writer or reader disconnects

This debugging can be used for the performance application to calculate the connect and disconnect duration.

Sequence diagram

The sequence diagram below shows how communication with DDS is used within the performance application. In
this sequence diagram, Matrix board 2 is already active and Matrix board 3 is started at the beginning of
the sequence diagram.

136 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

This sequence diagram is split into three parts. The Matrix board connects part shows the communication
flow when a new matrix board connects to the network. First, the matrix board ID is sent to the Matrix board
global topic. When the ID is received by Matrix board 2 application, it can connect to the Matrix
board 3 topic. Before connecting, the starting timestamp is sent towards the Debug topic. When Matrix
board 3 application receives a liveliness update that a new reader has connected, the stop timestamp is sent
towards the Debug topic.

The connect duration is measured by subtracting the start timestamp from the stop timestamp. This is measured
on Matrix board 3 topic instead of the Matrix board global topic because the global topic has
certain QoS policies that cannot be altered (else the global topic won’t work as expected). The Matrix board 3
topic does not have QoS policies that must be configured. Therefore, Matrix board 3 topic is used for the
measurements in the sequence diagram.

The Running state is the stable state. In this state, the matrix board sends the sensor data towards its own topic.
This can be read by other matrix boards (in this case Matrix board 2).

The Matrix board disconnects state shows the communication flow when a matrix board disconnects. Two
topics are notified by this action. Matrix board 2 is notified by both topics, and responds by disconnecting
from the Matrix board 3 topic. At the moment Matrix board 3 application is shut down, the
start timestamp is sent towards the Debug topic. When Matrix board 2 application is notified by the
Matrix board 2 topic, it sends the stop timestamp towards the Debug topic.

1.2. Main Table of Content 137

DDS-Demonstrators, Release TechPush

Performance application

This section describes how the performance application works using the class diagram. This section is divided into
the Master and Slave application.

Below, the deployment diagram is shown for the performance application. In this diagram, the communication between
the master and slave application can be seen. This diagram shows that each application creates one matrix board
application. The matrix board application sends data to the Debug topic. The Debug topic is being read by
the master application. There is also an Application topic which is used to send the configuration to the slave
applications. The slave application can then start the same application as the master.

Master

The class diagram of the Master application is displayed below.

The main is the start of the application. Here, the input parameters are processed and the TestsImplementation
is executed.

138 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

The TestsImplementation class is where the tests/performance measurements are implemented. This class is the
only class that needs to be changed for new performance measurements. This class sends the name of the application
that is executed to the slave with the ConfigurationSynchronizer class (using DDS). This way, the slave and
master can both start the same application (with the same configuration). By doing this, the started applications are
compatible with each other.

After sending the name of the application to the slave, it executes that application. This application is executed
multiple times until the Execution amount is reached of Executing the performance application. This execution
amount stands for the number of times a certain configuration is executed. So with an execution amount of 50, each
configuration is executed 50 times. This results in 50 measurements for one configuration (the configuration mentioned
here are the configurations that can be found in the custom_matrixboards directory).

When the application is started, a loop starts. This loop measures the CPU, virtual memory, and physical memory
usage of the application. The loop takes a random time from 2 to 7 seconds. This time was chosen because a static
time could influence the results (have the same result, if it is a deterministic application). The debug topic is also being
checked for any new messages. When the loop ends, the matrix board application is terminated with a kill signal and
the start of the disconnect duration is stored.

The Measurements class manages the measurements. This class reads from the debug topic using the
DebugTopicProcessor class and stores the results in a CSV (comma-separated value) file using the
FileManager class. The Measurements class combines the measurements from the DebugTopicProcessor
class to get the connect and disconnect duration from the timestamps it receives (by substracting the start timestamp
from the stop timestamp). The DebugTopicProcessor manages the individual messages from the debug topic
and stores them based on their classification (see below for an explanation of how they are classified).

The matrix board application sends messages to the debug topic. These messages contain 3 different parameters,
a string for a timestamp, a classifier, and an ID. The timestamp gives the ability to calculate the connect/disconnect
duration. The classifier can be four different values. It can be connecting (start during a connect), connected (stop
during a connect), disconnecting (start during a disconnect), and disconnected (stop during a disconnect)(see
Sequence diagram). The ID of each message on the debug topic is the ID of the topic where the measurements
are performed on. In the case of the sequence diagram above, it is 3 (see Sequence diagram, it’s 3 because the
measurements are executed on the Matrix board 3 topic).

Note: Master

The master application should have at least one slave connecting to its topic for the measurements. Therefore, a slave
with an ID less than the master’s ID should be active.

Note: Multiple masters

There can be multiple masters, but it must be verified that they execute the same matrix board configuration (and don’t
execute different configurations). Each master only reads the data on the topic of his matrix board. Therefore, this
would give different results for each master.

Slave

The class diagram of the slave application can be seen below.

1.2. Main Table of Content 139

DDS-Demonstrators, Release TechPush

The basics of this application work the same as the Master application. The main also parses the in-
put parameters of the application. The TestsImplementation reads from the application topic with the
ConfigurationSynchronizer class. If the Master sends a message containing an application, this appli-
cation is executed. If a matrix board application was already running on the slave, this application would be forcefully
stopped (these connect and disconnect durations are not measured).

Participant

There are 2 different participants in the performance application. One for the application topic for sending/receiving
the application that must be executed. The other one is for the debug topic. This one is created in the Measurements
class and deleted when the object is deleted. This is necessary because writers and readers on a topic are only re-
moved when the participant is deleted and not when the object that creates the writer/reader is deleted. When a
Measurements object is deleted, the corresponding reader/writer also needs to be removed. This is achieved by
having a separate participant for the Measurements class, which is removed when a Measurements object is
deleted.

In the future, the DebugTopicManager class could become a static class, or singular readers/writers could be
deleted from a topic (if this is possible within Cyclone DDS).

Resource usage

This chapter describes how the resource usage (CPU, physical memory and virtual memory) is measured.

The CPU, physical memory, and virtual memory are all measured using the Linux system calls. Linux keeps track
of each application what resources it uses. These values are read within the performance application using the PID
(Process ID) of the matrix board application. Therefore, these measurements do not influence the resource usage of
the matrix board application.

The CPU usage is only read every second because of a limitation for measuring the CPU usage. The CPU usage must
be calculated with 2 values after a certain time. Therefore, the CPU usage could have a bigger deviation between the
measurements (because of fewer measure points).

140 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

The results of the resource usage within the software are tested by comparing it with the top command of Linux.
These values corresponded with the results within the software.

Add/remove performance tests

Within the master application, new tests can be created easily. The slave does not have to be changed since it receives
the matrix board application it needs to execute from the master.

The following directory contains the TestsImplementation class of the master:
src/demonstrators/MatrixBoard/C++/performance_measurements/
performance_application/tests_implementation_master/

In the function void TestsImplementation::execute(const unsigned int matrixboardID),
new matrix board applications can be added.

A new application can be added using the following C++ code:

sendAndExecuteApplication(matrixboardID, "durability_persistent");

This line of code starts an application with the name of the second parameter. In this case, the name is
durability_persistent. This should be the name of the matrix board application that is stored in the
application location. This location points by default to src/demonstrators/MatrixBoard/C++/
performance_measurements/custom_matrixboards/build. This application is executed once or mul-
tiple times based on the Execution amount parameter (by default 4 times).

Custom matrix board applications can be added in the src/demonstrators/MatrixBoard/C++/
performance_measurements/custom_matrixboards/ directory. A directory containing a
specific_matrixboard.cpp file should be created. The contents of this file are shown in the code-
block below. The wanted QoS policies can be added at the place where the // Add custom configurations
in this function comment is.

#include "matrixboard/dds/specific_matrixboard.hpp"

namespace matrixboard {

/**
* @brief configures the qos policies

*
* @param qos the qos object

*/
void SpecificMatrixBoard::configureQoS(dds_qos_t *qos) {

// Add custom configurations in this function
dds_qset_liveliness(qos, DDS_LIVELINESS_MANUAL_BY_PARTICIPANT, DDS_MSECS(2500));

}

} // namespace matrixboard

The liveliness should always be configured and should always be less than 4 seconds. This is because the
ActiveMatrixboards topic should be slower compared to the specific_matrixboard topic with the liveli-
ness. Otherwise, the connect or disconnect duration could be skipped to be sent towards the debug topic. The liveliness
can be adjusted though in the code-block above.

For ease of compiling all the custom matrix boards, the new application should be added to the build_all.sh
script. So all custom matrix boards can be compiled using one build script. The new application can be added by

1.2. Main Table of Content 141

DDS-Demonstrators, Release TechPush

appending the following to the build_all.sh file:

cmake -D CUSTOM_MBC=unreliable .. && make -j4

In this example, unreliable must be replaced by the name of the newly added application.

Matrix board performance measurements

authors Joost Baars

date June 2020

Description

The matrix board performance measurements mainly measure the connect and disconnect duration of various QoS
configurations. By comparing different QoS policies with the connect and disconnect duration, the overhead of the
QoS policy can be visualized. The Quality of Service (QoS) policies are a set of configurable parameters that control
the behavior of a DDS system (how and when data is distributed between applications). Some of the parameters can
alter the resource consumption, fault tolerance, or the reliability of the communication.

Each entity (reader, writer, publisher, subscriber, topic, and participant) of DDS has associated QoS policies to it.
Some policies are only for one entity, others can be used on multiple entities.

Measurement 1

The performance measurements application was executed with 50 measurements for each configuration. 15 different
custom configurations were executed in these tests.

A description of each of the QoS policies and how they are used in the configurations can be found in: Measured QoS
policies.
The result of the measurement can be found in: Results measurement 1.

Setup

The setup consists of two Raspberry Pi’s with each a clean install of Raspbian Buster Lite 2020-03-13. The Raspberry
Pi’s that are used are the Raspberry Pi 2 model B and a Raspberry Pi 3 model B.

These Raspberry Pi’s only have the necessary dependencies installed. Both Raspberry Pi’s ran PTP in the background
for time synchronization.

The setup can be found in the image below. All devices are connected using ethernet cables (CAT6 cables were used).

142 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

Each device is connected using ethernet for having less deviation in the communication. Additionally, this results in
better accuracy for PTP (time synchronization).

Measured QoS policies

Every QoS policy in this list has the same configuration as the default configuration. With only one parameter
changed. The QoS policy is changed for the writer and the reader. It is chosen to have the same QoS policies active
on the writer and the reader to avoid any QoS incompatibilities.

More information about the durability types can be found here: Durability.

By default, CycloneDDS has some QoS policies enabled/configured. These are described in Cyclone DDS default
QoS policies.

Cyclone DDS default QoS policies

The default QoS policies that are already enabled by Cyclone DDS are the following:

The default QoS policies enabled for the writer:

Durability service is configured with a history of 1. The resource limits are unlimited within this QoS policy.
The cleanup delay (which will be varied in the Durability transient service) is by default 0.
The reliability reliable is configured with a maximum blocking time of 100 milliseconds.
The ownership strength is configured with a value of 0 (not changed during the tests).
The transport priority is configured with a value of 0 (not changed during the tests).
The lifespan is configured to be infinite.
The writer data lifecycle is configured with auto dispose unregistered instances of 1 (not changed during the tests).

The default QoS policies enabled for the reader:

The reliability best effort is configured.
The time-based filter is set to a minimum separation of 0 (not changed during the tests).

1.2. Main Table of Content 143

https://community.rti.com/static/documentation/connext-dds/5.3.0/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/Content/UsersManual/DURABILITY_QosPolicy.htm

DDS-Demonstrators, Release TechPush

The reader data lifecycle is configured to be infinite (not changed during the tests).
The lifespan is configured to be infinite.
The subscription keys care configured to be 0 (not changed during the tests).

These QoS policies are found from the source code of Cyclone DDS. The file can be found in
Default QoS policies Cyclone DDS. The functions ddsi_xqos_init_default_reader and
ddsi_xqos_init_default_writer contain the default QoS policies for the reader and the writer.

Default

Liveliness configured as manual by the participant (the participant must send a message manually within a certain
timeframe). The liveliness time is configured as 2500 milliseconds. The reliability is reliable with a maximum blocking
time of 10 seconds.

Durability

The durability configures if messages must be stored. And if so, where they are stored.

The durability set in the QoS policy is the name of the measurement. With durability_transient, durability
transient is enabled in the durability QoS policy.

More information about this QoS policy can be found here: Durability.

When there is service in the name, there is an additional configuration.

Durability transient service

More settings can be configured for the durability with the durability service QoS policy.

In the two tests with the durability service, only the cleanup delay was changed (how long information must
be kept regarding an instance). The history policy was set to KEEP ALL. The settings for the resource limits within
this service were all set to 25 messages/instances and samples per instance,

The durability_transient_service_long is configured with a time of 4 seconds. The
durability_transient_service_short is configured with a time of 10 milliseconds.

More information about this QoS policy can be found here: Durability service

Deadline

The deadline can be configured to set a requirement for the message frequency of the writer. If a writer does not send
a new message within the deadline time, the reader is notified. When there is a backup writer, the reader automatically
connects to the backup writer.

The long_deadline is configured with 4.5 seconds. The short_deadline is configured with 1.1 seconds. The
short_deadline is above 1 second because that is the interval in which the matrix board sends it’s sensor data. If
it would be below 1 second, the matrix board would have exceeded the deadline.

144 Chapter 1. Measure & Blog

https://github.com/eclipse-cyclonedds/cyclonedds/blob/master/src/core/ddsi/src/ddsi_plist.c
https://community.rti.com/static/documentation/connext-dds/5.3.0/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/Content/UsersManual/DURABILITY_QosPolicy.htm
https://community.rti.com/static/documentation/connext-dds/5.2.3/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/Content/UsersManual/DURABILITY_SERVICE_QosPolicy.htm

DDS-Demonstrators, Release TechPush

Lifespan

The lifespan can be configured to set how long messages can still be sent to new readers. So a newly connected reader
can read already sent messages with the lifespan configured.

The long_lifespan is configured with 4 seconds. The short_lifespan is configured with 50 milliseconds.

Liveliness

The liveliness can be configured to be able to know if writers/readers are still alive on a topic. The liveliness can be
automatically managed by DDS (by pinging the topic once in a while). It can also be configured manually if you
already sent messages within the maximum liveliness.

The ‘’short_liveliness‘‘ is configured to automatically send messages (liveliness_automatic). The time
is set to 50 milliseconds. The long_liveliness is configured to automatically send messages. The time
is set to 4000 milliseconds. Four seconds has been chosen because this is under the liveliness of the Active
Matrixboards topic of five seconds. The manual_liveliness is configured to base the liveliness on the
topic. Messages must be sent manually (liveliness_manual_by_topic). The default configuration is
configured to base the liveliness on the participant. Messages must also be sent manually in this configuration
(liveliness_manual_by_participant).

Reliability

The reliability can be configured to make sure that messages are received correctly by the reader. Reliability
reliable makes sure that messages are received correctly. If something goes wrong in the communication, the
message is resent.

The reliable application uses reliability reliable for the QoS policy. Therefore, messages are checked if they
are correctly received. This setting is the same as the default QoS policy.

The unreliable application uses reliability best effort for the QoS policy. Therefore, messages are not
checked if they are correctly received.

Results measurement 1

For each custom configuration, the performance measurements were executed 50 times. The average of these 50
measurements can be seen in the graphs in this section.

For each result described below, the deviation is also shown. This deviation is the difference between the highest value
and the lowest value of a custom configuration. Only one deviation value is shown because this did not have interesting
results (more can be shown if explicitly mentioned). This deviation is the highest deviation (of the 50 measurements)
on the default QoS policy.

The connect durations in the graph below are in microseconds. The default configuration is exactly the same as the
reliable configuration (see Reliability). Therefore, the longer default configuration is probably caused by being the first
measurement. The average of all the QoS policies lays around 13 milliseconds connect duration. The durability
volatile and the short liveliness QoS policy are a bit higher compared to the other QoS policies. Based
on the durability volatile usage, the QoS policy should not influence the connect duration. Therefore, the
peak of the durability volatile connect duration is probably due to connect duration fluctuations. As can be
seen below, the maximum measured deviation is high (33% deviation compared to the average result). This shows that
there is quite a lot of fluctuation in the connect duration.

Maximum deviation: 4321 microseconds

1.2. Main Table of Content 145

DDS-Demonstrators, Release TechPush

The disconnect duration seems mostly the same for the QoS policies. There are 2 QoS policies that are noticeably
different in the graph below. The long_liveliness QoS policy takes a lot longer compared to the others. This
is because a device is confirmed as “disconnected” after a longer time. The short_liveliness QoS policy takes
a lot shorter for the same reason. The short_liveliness QoS policy detects a disconnect after it receives no
messages from the device anymore within 50 milliseconds. Therefore, the result is below 50 milliseconds. The
lowest result of the 50 measurements with the short liveliness was only 9 milliseconds. The longest was
49 milliseconds. This shows that the QoS policy does its job very effectively (no measurements equal or above 50
milliseconds). The other QoS policies don’t seem to matter a lot for the disconnect duration.

Maximum deviation: 960

146 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

The CPU usage can be seen in the graph below. Most of the average CPU values lay around the 1%. There is one QoS
policy that clearly requires more CPU usage. This is the short liveliness QoS policy. This is expected for the
short liveliness QoS policy because it must ping to the other devices a lot more often. The application must
ping once within the 50 milliseconds compared to the long liveliness with a ping within 4 seconds.

Maximum deviation: 2.48%

1.2. Main Table of Content 147

DDS-Demonstrators, Release TechPush

There are no big differences in the physical memory usage. These measurements were also rather stable with a
maximum deviation of fewer than 150 kilobytes between the QoS policies (4% difference). The durability
transient and durability transient service long QoS policy seems to use more memory. The
manual liveliness and short lifespan also seem to use a little bit more memory.

As expected, the durability transient QoS policy uses more memory (old messages are stored using
the memory). The durability transient service short has around the same results compared to
the durability transient QoS policy. The difference between the long and short variant for the
durability transient service is that the short variant keeps the information regarding an instance for 4
seconds instead of 10 seconds. Possibly, this accounts for the difference in the graph.

Maximum deviation: 256.75 kB

148 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

The virtual memory usage was very stable and only differs 400kb maximum between the QoS policies (<1% differ-
ence). The differences could be accountable by the measure error. The default QoS policy is the same as the
reliable QoS policy. Therefore, the deviation between the measurements seem to be because of measure inaccu-
racy instead of QoS policies.

Maximum deviation: 1442.1 kB

1.2. Main Table of Content 149

DDS-Demonstrators, Release TechPush

Connect duration conclusions

The connect duration was mostly close to the 13 milliseconds. This didn’t deviate much between the QoS policies.
There was quite a lot of deviation between the connect duration measurements. This could be because short times
(milliseconds) are measured and the Raspberry Pi’s run a Linux OS that is not real-time. This OS could negatively
influence the deviation between the measurements.

Disconnect duration conclusions

The disconnect duration is mostly managed by the liveliness QoS policy. The matrix board application writes a
message to its topic every second. Therefore, the liveliness is updated every second (also with the liveliness set to
automatic).

The maximum deviation between the disconnect measurements is always less than the configured liveliness. This is
also expected, because when the liveliness time is reached, the disconnect duration measurement stops.

When the liveliness was set to 2.5 seconds and the writer writes a message every second, the maximum measured
deviation was a little bit less than a second. Also, the results were always between 1.5 seconds and 2.5 seconds.
This makes sense because when the liveliness timer reaches 1.5 seconds, a new message is sent by the writer, and the
liveliness is reset to 2.5 seconds.

When the automatic liveliness was set to 50 milliseconds, the maximum deviation was measured to be 40 milliseconds!
The shortest measured disconnect duration was only 9 milliseconds. That means that the liveliness ping messages are
in general executed every 40 milliseconds (with 50 milliseconds liveliness configured).

150 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

Resource usage

The liveliness automatic QoS policy has a noticeable impact on the CPU usage. Especially when the live-
liness is configured to be short. The durability transient and durability transient service
long seem to have a small impact on the physical memory usage.

Measurement 2

A second measurement was executed to see the scalability difference. The performance measurements default QoS
was executed twice. Once with 2 devices on the network (master + slave) and the other time with 4 devices on the
network (master + 3 slaves).

The measurements for the scalability were not reliable because it was not possible to have the same type of connection
for more than 4 devices. The used router only had 4 ethernet ports. More devices could be connected using Wi-Fi, but
Wi-Fi is a lot slower and could affect the measurements negatively. Additionally, there were only 4 Raspberry Pi’s.
Therefore, if more devices were added, laptops with different OSses had to be used (which could also negatively affect
the test).

Setup

The setup consists of 4 Raspberry Pi’s with each a clean install of Raspbian Buster Lite 2020-03-13. The Raspberry
Pi’s that are used are:

• Raspberry Pi 2 model B

• Raspberry Pi 3 model B

• 2 x Raspberry Pi 3 model B+

These Raspberry Pi’s only have the necessary dependencies installed. All 4 Raspberry Pi’s ran PTP in the background
for time synchronization.

The setup can be found in the image below. All devices are connected using ethernet cables.

The only devices connected to this router are the ones shown on the image above.

During the run with only 2 Raspberry Pi’s, both Raspberry Pi 3 model B+’s were used.

1.2. Main Table of Content 151

DDS-Demonstrators, Release TechPush

The master had an ID of 15 in the tests.

2 devices test: The only slave had an ID of 11. 4 devices test: The slaves had the ID’s: 11, 12, 16.

Results

For each setup (2 devices and 4 devices) 50 measurements were executed. These measurements were executed on the
default configuration.

The results of these measurements can be seen in the graphs below. This shows that the connect and disconnect times
were slightly faster with 4 devices. The difference for the connect time is around 5.6%. More measurements should be
executed to see if this difference is accountable by the deviation between the measurements or the number of devices.

For the disconnect duration, there was only a difference of 2%. This is probably due to the deviation between the
results. The result of the disconnect duration can be between the 1.5s and 2.5s. Therefore, the average result is
expected to be around 2 seconds.

There is a huge difference between the CPU usages. The measurement with 4 devices uses over 2x more CPU on
average. As shown in the UML diagrams below, the measurement with 4 devices has two more devices connected to
the master. This is expected to use more CPU. This is also probably the reason that the physical and virtual memory
usage is a bit higher on the 4 devices measurement.

Communication matrix board 15 with 2 devices:

Communication matrix board 15 with 4 devices:

Note: Reliability

The reliability of the test is not high because the results are highly probably accountable by how the matrix board
application works instead of the scalability of DDS. This test should be re-executed with a minimal of 5 devices on
the network. The master with 2 slaves with an ID below the master should be connected with an ethernet cable. The
other devices may be connected using Wi-Fi (the connect and disconnect durations are not affected then). The second
test should be executed with >5 devices.

152 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

Links

• Durability

• Durability service

• Default QoS policies Cyclone DDS.

Performance measurements data analysis

authors Joost Baars

date June 2020

1.2. Main Table of Content 153

https://community.rti.com/static/documentation/connext-dds/5.3.0/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/Content/UsersManual/DURABILITY_QosPolicy.htm
https://community.rti.com/static/documentation/connext-dds/5.2.3/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/Content/UsersManual/DURABILITY_SERVICE_QosPolicy.htm
https://github.com/eclipse-cyclonedds/cyclonedds/blob/master/src/core/ddsi/src/ddsi_plist.c

DDS-Demonstrators, Release TechPush

Description

This page describes how the data of the matrix board performance measurement application can easily be analyzed
(see application: Matrixboard performance application). This page contains a method that can easily calculate the
average of each configuration, the only part that needs to be done manually is creating graphs (if wanted).

Requirements

This page is tested on Microsoft Excel for Office 365. The code shown on this page should also work for other versions
of Excel, but the steps will probably be different.

• The CSV results of the performance application

• Microsoft Excel

Analyzing the data

Follow the steps below for easy calculating the average values of each configuration. Also, the maximum deviation is
calculated using these steps. This method is only useful if each configuration is executed at least twice.

1. Open the CSV results with Excel.
2. Go to the Developer tab in Excel (in the top bar)
3. Click on Insert
4. Select Command Button (ActiveX Control) under ActiveX Controls

5. Click somewhere on the Excel spreadsheet to create the command button
6. Right click the command button and select View Code

7. Copy the code below
8. Paste the code between Private Sub CommandButton1_Click() and End Sub

Dim i As Integer
Dim Copyrange As String
Dim String1 As String
Dim Name As String
Dim Connect As String
Dim Disconnect As String
Dim CPU As String
Dim Phys As String
Dim Virt As String
Dim start As Integer
Dim sizeMeasurement As Integer
Dim storeY As Integer
Dim FirstFind As Integer
MsgBox ActiveSheet.UsedRange.Rows.Count

FirstFind = 0
start = 1
sizeMeasurement = 1
storeY = 2

Cells(1, 10) = "Configuration"

(continues on next page)

154 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

(continued from previous page)

Cells(1, 11) = "Connect duration average"
Cells(1, 12) = "Disconnect duration average"
Cells(1, 13) = "CPU usage average"
Cells(1, 14) = "Physical memory usage average"
Cells(1, 15) = "Virtual memory usage average"
Cells(1, 17) = "Connect duration maximum deviation"
Cells(1, 18) = "Disconnect duration maximum deviation"
Cells(1, 19) = "CPU usage maximum deviation"
Cells(1, 20) = "Physical memory usage maximum deviation"
Cells(1, 21) = "Virtual memory usage maximum deviation"

For i = 1 To ActiveSheet.UsedRange.Rows.Count
Let Copyrange = "A" & i
If IsNumeric(Cells(i, 1).Value) = False Or i = ActiveSheet.UsedRange.Rows.Count

→˓Then
Let String1 = "J" & storeMeasurement
If FirstFind = 1 Then

Cells(storeY, 10) = Cells(start, 1)
Cells(storeY, 11) = Application.Average(Range(Cells(start, 2), Cells(i -

→˓1, 2)).Value)
Cells(storeY, 12) = Application.Average(Range(Cells(start, 5), Cells(i -

→˓1, 5)).Value)
Cells(storeY, 13) = Application.Average(Range(Cells(start, 7), Cells(i -

→˓1, 7)).Value)
Cells(storeY, 14) = Application.Average(Range(Cells(start, 8), Cells(i -

→˓1, 8)).Value)
Cells(storeY, 15) = Application.Average(Range(Cells(start, 9), Cells(i -

→˓1, 9)).Value)
Cells(storeY, 17) = Application.Max(Range(Cells(start, 2), Cells(i - 1,

→˓2)).Value) - Application.Min(Range(Cells(start, 2), Cells(i - 1, 2)).Value)
Cells(storeY, 18) = Application.Max(Range(Cells(start, 5), Cells(i - 1,

→˓5)).Value) - Application.Min(Range(Cells(start, 5), Cells(i - 1, 5)).Value)
Cells(storeY, 19) = Application.Max(Range(Cells(start, 7), Cells(i - 1,

→˓7)).Value) - Application.Min(Range(Cells(start, 7), Cells(i - 1, 7)).Value)
Cells(storeY, 20) = Application.Max(Range(Cells(start, 8), Cells(i - 1,

→˓8)).Value) - Application.Min(Range(Cells(start, 8), Cells(i - 1, 8)).Value)
Cells(storeY, 21) = Application.Max(Range(Cells(start, 9), Cells(i - 1,

→˓9)).Value) - Application.Min(Range(Cells(start, 9), Cells(i - 1, 9)).Value)

storeY = storeY + 1
End If
start = i
FirstFind = 1

End If
Next i

8. Click ctrl + s on the keyboard to save the code (or use the save button in the bar on the top)
9. Close the code window
10. Within the Excel spreadsheet, go to the Developer tab again
11. Deselect the Design Mode button by pressing on it (only do this when the button is selected)
12. Click on the created button within the Excel spreadsheet

1.2. Main Table of Content 155

DDS-Demonstrators, Release TechPush

Data should be generated by clicking on the button.

The average data should now appear on the top of the Excel spreadsheet (on the right of the csv results). If the button
is placed on the data, the button can be moved by selecting the Design Mode within the Developer tab.

The meaning of the data is also generated using this script. The maximum deviation is the deviation between the
lowest and highest value within the measurements.

Connect duration

The connect duration is measured between registering to a topic and being notified that a device is connected to the
topic. This principle is displayed below for Application1. In this figure, the process that determines the duration
between registering and other devices being notified is displayed. The duration between the start of the “registers to
topic” arrow and the end of the “notified” arrow is the connect duration.

Disconnect duration

The disconnect duration is measured between disconnecting from a topic and being notified that a device has dis-
connected from the topic. This principle is displayed below for Application1. In this figure, the process that
determines the duration between disconnecting and other devices being notified is displayed. The duration between
the start of the “Disconnects from topic” arrow and the end of the “notified” arrow is the disconnect duration.

Helper pages

The following pages are written for explaining some topics. This information does not contain information needed for
the performance measurements, but contains information that could be useful for debugging or learning more about
the tools.

systemctl/systemd basics

authors Joost Baars

156 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

date June 2020

Description

This page describes some information about systemctl and systemd.

systemctl commands

systemctl contains some useful commands for managing services (applications that can be run). An example of
creating a service is shown in Matrix board performance application system setup for creating ptpd as a service.

Some useful commands are shown below. In these examples, the <servicename> tag should be replaced with a
service name.

The command below requests the status of a service. In this status, the logging can be seen from the service. Also, it
is shown if a service is running, stopped, crashed, or if it is never started in the first place.

systemctl status <servicename>

The commands below enable or disable a service. Only one of these commands should be used at a time. By enabling
a service, the service is started upon boot. By disabling a service, the service is not started upon boot.

sudo systemctl enable <servicename>
sudo systemctl disable <servicename>

The commands below start, stop or restart a service. Only one of these commands should be used at a time. These
commands control a service manually. With the start command, a service can manually be started. With the stop
command, it can be stopped. And as you probably guessed, with the restart command, a service can be restarted.

sudo systemctl start <servicename>
sudo systemctl stop <servicename>
sudo systemctl restart <servicename>

systemd information

With various systemd commands, the boot time and boot order can be shown. This can be useful if you want to
speed up the boot time on a device or if you want to start a service after another service has been initialized (which is
used in the section above).

Boot time

The boot time can be visualized using the following command:

systemd-analyze

This command shows the kernel setup time and the service initialization time. Each application and their influence of
this time can be shown with the following command:

systemd-analyze blame

Using this command, the influence of every service is shown. This way, you can remove or reduce specific applications
that take long to configure during boot.

1.2. Main Table of Content 157

DDS-Demonstrators, Release TechPush

Boot order

The boot order can also be useful. The order can be adjusted. If you add a service manually, you can place it before
other applications. This way, you can reduce the time it takes to execute that service upon boot. The following
command stores the boot order in a svg file (named bootup.svg).

systemd-analyze plot > bootup.svg

If you run on a system without a GUI, this file should be transferred to your computer (for example using FTP).

Links

• More information about Systemctl

Links

• General information regarding QoS within DDS: https://community.rti.com/glossary/qos

• List of all QoS policies within DDS: https://community.rti.com/rti-doc/500/ndds.5.0.0/doc/pdf/RTI_
CoreLibrariesAndUtilities_QoS_Reference_Guide.pdf

• List of all QoS policies (less information but with hyperlinks): https://community.rti.com/static/documentation/
connext-dds/5.2.0/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/
Content/UsersManual/QosPolicies.htm

• Some examples given by RTI: https://community.rti.com/static/documentation/connext-dds/5.2.0/doc/
manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/Content/UsersManual/
ControllingBehavior_withQoS.htm

MQTT C++

authors Sam Laan

date March 2020

Description

MQTT stands for Message Queuing Telemetry Transport. MQTT is a lightweight publish/subscribe messaging pro-
tocolcite{MQTT:online}. It was designed to be used with constrained devices and low-bandwidth, high-latency or
unreliable networks. It was developed by IBM and standardized by OASIS. MQTT works using a client and a broker.
The client publishes messages to a topic on a broker, clients that are subscribed to this topic get these messages from
the broker. These messages can also be retained for future subscribers. Clients can subscribe to multiple topics and
receive every message published to each topic. There are multiple MQTT clients and brokers available.

MQTT install

For MQTT the Mosquitto broker is used, this broker was chosen because it has the best throughput, least latency and
is the most popular broker.

158 Chapter 1. Measure & Blog

https://www.linode.com/docs/quick-answers/linux-essentials/introduction-to-systemctl/
https://community.rti.com/glossary/qos
https://community.rti.com/rti-doc/500/ndds.5.0.0/doc/pdf/RTI_CoreLibrariesAndUtilities_QoS_Reference_Guide.pdf
https://community.rti.com/rti-doc/500/ndds.5.0.0/doc/pdf/RTI_CoreLibrariesAndUtilities_QoS_Reference_Guide.pdf
https://community.rti.com/static/documentation/connext-dds/5.2.0/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/Content/UsersManual/QosPolicies.htm
https://community.rti.com/static/documentation/connext-dds/5.2.0/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/Content/UsersManual/QosPolicies.htm
https://community.rti.com/static/documentation/connext-dds/5.2.0/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/Content/UsersManual/QosPolicies.htm
https://community.rti.com/static/documentation/connext-dds/5.2.0/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/Content/UsersManual/ControllingBehavior_withQoS.htm
https://community.rti.com/static/documentation/connext-dds/5.2.0/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/Content/UsersManual/ControllingBehavior_withQoS.htm
https://community.rti.com/static/documentation/connext-dds/5.2.0/doc/manuals/connext_dds/html_files/RTI_ConnextDDS_CoreLibraries_UsersManual/Content/UsersManual/ControllingBehavior_withQoS.htm

DDS-Demonstrators, Release TechPush

sudo apt-add-repository ppa:mosquitto-dev/mosquitto-ppa
sudo apt-get update
sudo apt-get install mosquitto

For the first version paho MQTT was used, which can be installed by performing the following steps (check the readme
of their GitHub page for updates): firstly you need to install the following packages:

sudo apt-get install build-essential gcc make cmake cmake-gui cmake-curses-gui
sudo apt-get install libssl-dev
sudo apt-get install libcppunit-dev

After this the c library of paho needs to be installed:

git clone https://github.com/eclipse/paho.mqtt.c.git
cd paho.mqtt.c
cmake -Bbuild -H. -DPAHO_WITH_SSL=ON -DPAHO_ENABLE_TESTING=OFF
sudo cmake --build build/ --target install
sudo ldconfig

This builds with SSL/TLS enabled. If that is not desired, omit the -DPAHO_WITH_SSL=ON. After this, the C++
library can be installed.

git clone https://github.com/eclipse/paho.mqtt.cpp
cd paho.mqtt.cpp
cmake -Bbuild -H. -DPAHO_BUILD_DOCUMENTATION=TRUE -DPAHO_BUILD_SAMPLES=TRUE
sudo cmake --build build/ --target install
sudo ldconfig

The library can now be used and should be linked as shown below using CMAKE:

find_package(PahoMqttCpp REQUIRED)
target_link_libraries({yourexecutable} paho-mqttpp3 paho-mqtt3as)

MQTT solutions

This list contains the solutions regarding MQTT.

• MQTT Matrixboard

Links

• List of brokers: https://github.com/mqtt/mqtt.github.io/wiki/brokers

• List of libraries: https://github.com/mqtt/mqtt.github.io/wiki/libraries

• Effects of QoS standards: https://www.researchgate.net/profile/Shinho_Lee4/publication/261230513_
Correlation_analysis_of_MQTT_loss_and_delay_according_to_QoS_level/links/5dc93fcb458515143500e981/
Correlation-analysis-of-MQTT-loss-and-delay-according-to-QoS-level.pdf

• Comparison brokers: http://www.shudo.net/publications/201709-CloudNet-2017-hetero-MQTT-brokers/
banno-CloudNet-2017-hetero-MQTT-brokers.pdf

• Github page paho.mqtt.cpp: https://github.com/eclipse/paho.mqtt.cpp

1.2. Main Table of Content 159

https://github.com/mqtt/mqtt.github.io/wiki/brokers
https://github.com/mqtt/mqtt.github.io/wiki/libraries
https://www.researchgate.net/profile/Shinho_Lee4/publication/261230513_Correlation_analysis_of_MQTT_loss_and_delay_according_to_QoS_level/links/5dc93fcb458515143500e981/Correlation-analysis-of-MQTT-loss-and-delay-according-to-QoS-level.pdf
https://www.researchgate.net/profile/Shinho_Lee4/publication/261230513_Correlation_analysis_of_MQTT_loss_and_delay_according_to_QoS_level/links/5dc93fcb458515143500e981/Correlation-analysis-of-MQTT-loss-and-delay-according-to-QoS-level.pdf
https://www.researchgate.net/profile/Shinho_Lee4/publication/261230513_Correlation_analysis_of_MQTT_loss_and_delay_according_to_QoS_level/links/5dc93fcb458515143500e981/Correlation-analysis-of-MQTT-loss-and-delay-according-to-QoS-level.pdf
http://www.shudo.net/publications/201709-CloudNet-2017-hetero-MQTT-brokers/banno-CloudNet-2017-hetero-MQTT-brokers.pdf
http://www.shudo.net/publications/201709-CloudNet-2017-hetero-MQTT-brokers/banno-CloudNet-2017-hetero-MQTT-brokers.pdf
https://github.com/eclipse/paho.mqtt.cpp

DDS-Demonstrators, Release TechPush

ZMQ C++

authors Sam Laan

date March 2020

Description

ZeroMQ (also known as ØMQ, 0MQ, or zmq) is a message-oriented middleware. It is used in various environments
for example in embedded systems, aerospace and financial services. ZeroMQ provides a library, not a messaging
server. It gives sockets that carry atomic messages across various transports like in-process, inter-process, TCP, and
multicast. Each socket can handle communication with multiple peers. ZeroMQ allows these sockets to be connected
through different patterns. The protocol uses ZMTP(ZeroMQ Message Transport Protocol) on the wire which makes
use of message batching, asynchronous communication and supports zero-copy. ZeroMQ core is written in C/C++
and has bindings for most modern programming languages and operating systems.

ZMQ install

To use ZeroMQ the C library has to be installed this can be done like so:

git clone https://github.com/zeromq/libzmq
cd libzmq
mkdir build
cd build
sudo cmake ..
sudo make install

After this the C++ lib can be installed. The cppzmq was chosen because it’s the most lightweight, the most used and
the best mantained C++ lib.

git clone https://github.com/zeromq/cppzmq
cd cppzmq
mkdir build
cd build
sudo cmake ..
sudo make install

ZMQ solutions

This list contains the solutions regarding ZMQ and C++.

• ZMQ C++ Matrixboard

Links

• List of bindings: http://wiki.zeromq.org/bindings:_start

Excel

authors Sam Laan

160 Chapter 1. Measure & Blog

http://wiki.zeromq.org/bindings:_start

DDS-Demonstrators, Release TechPush

date April 2020

Description

Excel is used in some cases to visualise data collected within performance measurements. Used Excel features and
techniques will be described. These descriptions can be found using the links underneath.

Features and techniques

This list contains the findings regarding the QoS policies.

Power Pivot

authors Sam Laan

date April 2020

Description

This page shows information about using a CSV file with Power Pivot.

Enabling Power Pivot

Power Pivot is not enabled by default in Excel and is also not available when using a CSV file. To enable Power Pivot,
the following steps should be followed:

• Press file in the top bar.

• Select options.

• Select Add-ins.

• Select COM Add-ins in the bottom dropdown and click go.

• Check the box next to Power Pivot for Excel.

Congratulations! you have enabled Power Pivot.

Importing a CSV File

Power Pivot is capable of importing data from various sources. These are the steps to import a CSV file.

• Choose Power Pivot in the top bar.

• Press manage

• Select Get External Data

• Select from other sources

• Scroll down and select Text File

• Browse and select the desired CSV

• Choose the applicable column separator

1.2. Main Table of Content 161

DDS-Demonstrators, Release TechPush

• Use the first row as headers if applicable

• Press finish

The CSV file will now be imported. The data from the file can be refreshed using the refresh button. To get a pivot
table of your data on your Excel sheet press PivotTable. This pivot table can be used to filter data and as a source for
graphs. You can also add measures.

Measures

Measures can be used to create calculated columns within the data. DAX syntax is used to create measures click on
your pivot table. To find out more about DAX syntax please look at the syntax reference (https://docs.microsoft.com/
nl-nl/dax/dax-syntax-reference).

Nucleo Setup

authors Furkan Ali Yurdakul

date April 2020

Description

The Nucleo-F767ZI is a development board that will be used to demonstrate the DDS implementation on embedded
bare-metal hardware.

The user will be guided through some steps, to make sure the hardware is correctly working and the user is capable
of making use of the required features. Make sure the Nucleo is connected to the computer, when making use of a
terminal or flashing the code.

From now on the Nucleo-F767ZI will be shortened to Nucleo.

More information about the Nucleo can be found in the Links.

Nucleo Initialization

This list contains guides to set up different parts of the Nucleo.

How to setup the Nucleo

authors Furkan Ali Yurdakul

date March 2020

In this page, there will be a step by step tutorial to make sure your Nucleo is set up and ready to be programmed.

For this tutorial the following products have been used:

• Nucleo

• Lenovo Thinkpad T470 (Windows)

• Micro USB cable

• STM32CubeIDE

162 Chapter 1. Measure & Blog

https://docs.microsoft.com/nl-nl/dax/dax-syntax-reference
https://docs.microsoft.com/nl-nl/dax/dax-syntax-reference

DDS-Demonstrators, Release TechPush

Install programming environment

First, connect the Nucleo with a micro USB cable to your PC.

To be able to program the Nucleo the standard programming environment is used, called the STM32CubeIDE. This
IDE can be downloaded via this link: https://www.st.com/en/development-tools/stm32cubeide.html.

First, open the downloaded executable to start the installation.

Within the installation, it is decided to install all the components as seen below.

1.2. Main Table of Content 163

https://www.st.com/en/development-tools/stm32cubeide.html

DDS-Demonstrators, Release TechPush

The destination folder should not matter, but for this tutorial it has been chosen to use the default destination.

If asked to install Universal Serial Bus software, click “Install”.

This is how it should look like when the installation of the driver is finished.

164 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

If everything went as expected, continue with the next step. If not, uninstall the STM32Cube IDE and redo these steps.

Start a new project

After opening the IDE, the starting screen will look like the picture below. Click on the left top button to start a new
project.

After starting a new project, the IDE will ask what the project is targeted for. In this case, the project is targeted

1.2. Main Table of Content 165

DDS-Demonstrators, Release TechPush

towards the Nucleo-F767ZI. To target the project for this specific board, click on board selector and search for “Nucleo-
F767ZI”. Thereafter click on the star next to the board and click finish.

The project needs a name, any name will do. But for this project, it’s chosen to call it “HelloWorld” as this project
will be used for more simple tests in the future.

For this tutorial, the options selected in the picture below will be used.

166 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

The setup will ask to initialize everything in its default mode. For this tutorial, it’s chosen to make use of this. In case
of additional research, it will make it easier for the user when using the default initialization.

Accept opening the project in the STM32CubeMx perspective.

1.2. Main Table of Content 167

DDS-Demonstrators, Release TechPush

After finishing the setup, the IDE will start downloading and loading all the needed files and it should look like the
picture down below. When this is done the IDE is finished setting up.

If everything went as expected, continue with the next step. If not, delete the project and redo this step.

168 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

Update drivers

When the project is finished building it is not yet able to program the Nucleo. This is because the drivers that are
installed are not up to date. To update the drivers click on the help button and afterward click on ST-LINK Upgrade.

The tab that it opens requires it to be in update mode, to enable update mode click on the button “Open in update
mode”. Afterward, click on the “Upgrade” button to start the installation and wait until it finishes.

If everything went as expected, continue with the next step. If not, redo this step.

Configure pin-out for onboard button

To test if the Nucleo isn’t broken and can be programmed, the onboard button(BT1) will be used to toggle the red
LED(LD3).

The configurations of these pin-outs can be done using the IDE controller interface. Open HelloWorld.ioc to open the
interface. Afterward, click on the System Core category and select GPIO to find the configurations for the pin-outs.

1.2. Main Table of Content 169

DDS-Demonstrators, Release TechPush

Pin PC13 is connected to the onboard button and pin PB14 is connected to the red LED. Pin PB14 should already have
a user label “LD3”. To make it easier to program pin PC13, PC13 will get the user label “BT1“.

When done, save the interface via “CTRL+S” buttons and click yes to generate the code for it.

If everything went as expected, continue with the next step. If not, redo this step.

170 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

Code flashing

Add the following code to your while loop:

if(HAL_GPIO_ReadPin(BT1_GPIO_Port, BT1_Pin)){
HAL_GPIO_WritePin(LD3_GPIO_Port, LD3_Pin, GPIO_PIN_SET);

} else {
HAL_GPIO_WritePin(LD3_GPIO_Port, LD3_Pin, GPIO_PIN_RESET);

}

When done adding click on Run code and wait till it’s finished. The Run code can be found on the top of the IDE see
the picture below.

If everything went as expected, test the board and continue with the next step. If not, delete all written code and redo
this step.

End result

If everything went successful you should be able to click on the onboard button to toggle a led.

1.2. Main Table of Content 171

DDS-Demonstrators, Release TechPush

If this is not happening restart process from Configure pin-out for onboard button. If it did work, this means your
board is successfully set and is ready for future projects.

Check “Serial Communication with the Nucleo” to learn how to make serial communication with the Nucleo.

Serial Communication with the Nucleo

authors Furkan Ali Yurdakul

date April 2020

In this page, there will be a step by step tutorial to make sure your Nucleo can make use of USART to send data to
your computer with the use of a micro USB cable. The expected result is to receive the same message back that will
be sent from a computer.

For this tutorial the following products have been used:

• Nucleo

• Lenovo Thinkpad T470 (Windows)

• Micro USB cable

• STM32CubeIDE

• Hercules (Terminal)

Hardware Pinout

The Nucleo can have multiple USART communications, these can be found in the datasheet. The one that will be used
for serial communication between a computer and a Nucleo is USART3.

The reason behind this is because the datasheet specifically tells that USART3 uses the output for ST-Link, also known
as the port where the micro USB is connected.

172 Chapter 1. Measure & Blog

https://www.st.com/resource/en/user_manual/dm00244518-stm32-nucleo144-boards-stmicroelectronics.pdf

DDS-Demonstrators, Release TechPush

USART3 can also be reconfigured to make use of the ST morpho output. This can be done if a specific solder bridge
is changed, see the image below. But since this is not preferred, the default configuration for the solder bridges will
be used. If your board doesn’t have the default configuration, see the image below which settings are needed to use
ST-Link as the output for USART3.

See the following image for the hardware pinout how the pins are connected to ST-link.

The next step is to initialize the USART3 in the Nucleo.

1.2. Main Table of Content 173

DDS-Demonstrators, Release TechPush

Initialize USART3

To initialize USART3 for the Nucleo, you simply need to open the “.ioc” file in the STM32CubeIDE. The USART3
can be found in the Connectivity section, click on it. Set mode to Asynchronous and change the Baud Rate to 9600
Bits/s. Asynchronous is used, because there is no clock signal used for the communication. The Baud Rate is lowered
to ensure stability over speed, because speed is not a necessity in for this tutorial.

See the image below for how it should look like:

The pins PD8 and PD9 should be linked to ST-Link. To make sure the pins are linked, check the pinout view on the
right side of the image.

It is also a must to enable global interrupts for USART3. This can be done by going into the NVIC settings of the
USART3. See the image below:

174 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

When your IDE User Interface is looking the same as the images, press CTRL+S to save it and click yes to generate
code for the initialization. The next step will be to write the code and flash it on the Nucleo.

Code flashing

Because interrupts are used, we do not have to change the main code. The interrupts must ensure that the code for
controlling the LED is not disturbed.

First, the received and transmitted characters must be stored so that they can be used to send it back. For this, 2
variables are created called rx_buff for the received message and tx_buff for the message to be sent.

These are added in the USER CODE 0 section:

/* USER CODE BEGIN 0 */
uint8_t tx_buff;
uint8_t rx_buff;
/* USER CODE END 0 */

The Nucleo will act as a slave since its only job is to echo the received messages. The receive interrupt must, therefore,
be initialized first. This is done in the USER CODE 2 section:

1.2. Main Table of Content 175

DDS-Demonstrators, Release TechPush

/* USER CODE BEGIN 2 */
HAL_UART_Receive_IT(&huart3, &rx_buff, 1);
/* USER CODE END 2 */

A receive interrupt has been set for USART3. rx_buff is the variable where the received byte is stored and 1 represents
the interrupt calls for each byte received. These are added in the USER CODE 4 section:

/* USER CODE BEGIN 4 */
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{

tx_buff = rx_buff;

HAL_UART_Transmit_IT(&huart3, &tx_buff, 1);
}
void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart)
{

HAL_UART_Receive_IT(&huart3, &rx_buff, 1);
}
/* USER CODE END 4 */

A transmit interrupt for USART 3 has been set within the receive callback. This way the moment it’s done receiving
the byte it will start transmitting it back.

When every piece of code is added, click on Run code and wait till it’s finished. This should flash the Nucleo without
errors and you can continue with the next step. If not, delete all written code and redo this step. The code will be
tested in the next step, with the use of a terminal.

Terminal

To communicate with the Nucleo, your computer needs software to receive and send serial data through your USB
port(COM port). There are multiple good terminals someone could use as this is a matter of personal preference.
There will be some recommended terminals down below:

• Hercules

• PuTTy

• DockLight

In this tutorial Hercules is used, but there is no problem with using anything else that is capable of making a serial
connection via any COM port. For Hercules, it should look like the image below:

176 Chapter 1. Measure & Blog

https://www.hw-group.com/software/hercules-setup-utility
https://www.putty.org/
https://docklight.de/

DDS-Demonstrators, Release TechPush

The settings for the terminal should be the same as the USART3 initialization of the Nucleo. Besides the settings,
select the correct COM port in this case it was COM5.

End Result

After the terminal is set and the code is flashed on the Nucleo, send a message via the terminal and the Nucleo should
send the same message back.

1.2. Main Table of Content 177

DDS-Demonstrators, Release TechPush

If it did work, this means your board is ready to make use of serial communication. Otherwise restart the process from
Initialize USART3.

Links

• Datasheet of the Nucleo: https://www.st.com/resource/en/datasheet/stm32f767zi.pdf

• IDE used for the Nucleo: https://www.st.com/en/development-tools/stm32cubeide.html

• Source code for the guide: src/demonstrators/BareMetalEmbedded/HelloWorld/

Nucleo DDS

authors Furkan Ali Yurdakul

date May 2020

Description

DDS is a communication that is done in Real-Time. For this reason, the Nucleo is required to function in Real-Time
as well.

Besides being Real-Time, the communication is required to use a network communication protocol, for example
TCP/IP. For the Nucleo, this is only possible via the Ethernet port. The pin-out needs to be set up for the Ethernet port
as well as the TCP/IP stack. For the TCP/IP the build-in LwIP stack will be used, which is made for the embedded
application on STM32 microcontrollers. On top off the TCP/IP stack there will be the DDS stack. For this, the
Eprosima’s FastRTPS library is chosen.

178 Chapter 1. Measure & Blog

https://www.st.com/resource/en/datasheet/stm32f767zi.pdf
https://www.st.com/en/development-tools/stm32cubeide.html

DDS-Demonstrators, Release TechPush

These libraries will then be combined to create the solution for using DDS on embedded bare-metal hardware.

More information about the Nucleo can be found in the Links.

DDS Setup

This list contains guides to set up different parts of the Nucleo.

FreeRTOS setup on the Nucleo

authors Furkan Ali Yurdakul

date May 2020

Description

Embedded bare-metal hardware needs some adjustments to make proper use of DDS. These kinds of hardware are
mainly not suited for software operating in Real-Time. DDS will work when the communication operates in a non-
Real-Time software, but will lose its purpose. Because of this, the software would need an OS to make the Nucleo
operate in Real-time. In this guide, FreeRTOS will be used to run two tasks simultaneously, which are for toggling
LEDs at a different speed.

For this tutorial the following products have been used:

• Nucleo

• Lenovo Thinkpad T470 (Windows)

• Micro USB cable

• STM32CubeIDE

Real-Time OS

There are multiple Operating Systems that are Real-Time OS (RTOS) with a focus on microcontrollers from 8- to
32-bits. Some examples of RTOSes are VxWorks, QNX, Win CE, pSOS, Nucleus® RTOS, NuttX, and FreeRTOS™.
RTOSes enable to run multiple tasks and schedule them according to a preemptive scheduling algorithm at the same
time with usages of interrupts. More about RTOSes.

These RTOSes all have the same purpose, but the way how the RTOS is making use of the memory and/or interrupts
will have an impact on the latency of the RTOS. This guide is not to show how we could improve the speed of the
communication using DDS, but rather how to use the protocol itself. In this case it doesn’t matter which RTOS is
chosen, as long as it’s compatible with the Nucleo.

The decision for the best RTOS has been made by taking into consideration if there is enough support/documentation
to be found on- or offline, and the accessibility of the RTOS. The datasheet of the Nucleo shows the support and usage
of FreeRTOS.

The webpage of FreeRTOS mentions the software being open-source and makes use of an MIT-License. The reasons
elaborated above make the usage of FreeRTOS optimal for this project and there is no need to look any further.

1.2. Main Table of Content 179

https://www.microcontrollertips.com/real-time-standard-how-to-choose-rtos/

DDS-Demonstrators, Release TechPush

Implementation of FreeRTOS

Let’s start with making a clean project for this guide. If you have trouble or forgot how to do this, see “How to setup the
Nucleo” how to make a clean project specifically for the Nucleo. You can name this project anything you want since
it will not be used for the end product, but only to test FreeRTOS. For this guide the project is called “FreeRTOS”.

2 on-board LEDs will be used to test how to make 2 tasks run simultaneously. For this we need to enable 2 pins as
output. Open the “.ioc” file and look for “GPIO” under the section “System Core”. If a clean build was made, this is
how it should look like.

The on-board LEDs are preselected and the labels should be visible as LD1 [Green], LD2 [Blue] and LD3 [Red].

In the “Middleware” section you can find the FreeRTOS interface. Set the interface to CMSIS_V2(CMSIS_V1 is just
an older API version) to enable the use of FreeRTOS.

180 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

This guide will show how to toggle 2 different LEDs at different speeds. For this, we will need 2 tasks which can
be created in the tab called “Tasks and Queues”. The tasks made for this guide are called StartBlinkGreen and
StartBlinkRed, and entry function names are BlinkGreen and BlinkRed. Judged by the name, BlinkGreen will toggle
the green LED on and off and the BlinkRed will do the same for the red LED.

1.2. Main Table of Content 181

DDS-Demonstrators, Release TechPush

When everything is done as above and matches the pictures, continue with the next part. This part explains and
implements the change for the timebase source.

System Timer

The HAL, an STM32 embedded software layer that ensures maximized portability across the STM32 portfolio, makes
use of a unique timebase source. The RTOS has full control over this source and most RTOSes force the system
timer(SysTick) priority to be the lowest. For this reason, the timebase source will be changed from SysTick to a less
commonly used timer. In the note below, you can find a quote taken from the datasheet of the STM32CubeIDE, which
explains why exactly it is better to use a different timebase source instead of the SysTick (datasheet).

Note: “By default, the STM32Cube HAL is built around a unique timebase source, the Arm® Cortex® system timer
(SysTick).

However, HAL-timebase related functions are defined as weak so that they can be overloaded to use another hardware
timebase source. This is strongly recommended when the application uses an RTOS, since this middleware has full
control on the SysTick configuration (tick and priority) and most RTOSs force the SysTick priority to be the lowest.

Using the SysTick remains acceptable if the application respects the HAL programming model, that is, does not
perform any call to HAL timebase services within an Interrupt Service Request context (no dead lock issue).”

This project doesn’t make use of any timers yet but taken into consideration for the future purpose of this project a
basic timer will be used. Based on the datasheet of the Nucleo, timer 6(TIM6) and timer 7(TIM7) are the basic 16-bit
timers. To prevent conflicts in the future the timebase source will be TIM6.

To do this open the category “System Core” and open “SYS”. Here we can change the timebase source to TIM6.

182 Chapter 1. Measure & Blog

https://www.st.com/en/development-tools/stm32cubeide.html

DDS-Demonstrators, Release TechPush

After everything is selected, close the “.ioc” file and accept to generate the code. This would create all the software
needed for FreeRTOS and the tasks for it.

Testing FreeRTOS

From now on all the coding will be done within the created tasks and not in the main while loop. This is because the
system is taken over by the FreeRTOS.

1.2. Main Table of Content 183

DDS-Demonstrators, Release TechPush

To toggle the LEDs, the software will make use of HAL_GPIO_TogglePin() command. To show that the system can
run multiple tasks at the same time we will use a delay to toggle the LEDs. The command osDelay() will be used to
create a delay. Without an RTOS the delays should conflict the frequency of the LEDs toggling on and off. For this
test the green LED will toggle every second and the red LED will toggle every half second. The image below shows
the implementation for toggling the pins and the used delays.

After everything is done, save and compile the “main.c” file. the compilation shouldn’t give any conflicts. If it does
delete the written code a rewrite matching the image above. If it doesn’t give any conflicts, flash the software on the
Nucleo. The Nucleo should toggle the green LED every second and the red LED twice as fast. This shows that the 2
tasks, which both have delays build in, can run at the same time.

This allows us to have a Real-Time system and are ready to continue with the next step. The next step, “Libraries

184 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

for DDS on bare-metal”, explains what kind of libraries are needed and how they are implemented to make use of the
communication protocol DDS.

Libraries for DDS on bare-metal

authors Furkan Ali Yurdakul

date June 2020

Description

The application layer diagram shows the layers of embedded bare-metal hardware when implementing DDS. On top,
there is the Application layer where the main software runs. The main software does the calculations with the input
and outputs. The Middleware is where the DDS library belongs. This library will set a proper message whatever it is
you are sending or decypher whatever you are receiving. DDS makes use of the TCP/IP protocol to send messages on
a low level through the Eternnet port. For this the Light Weight IP (LWIP) is used in the Network Stack layer.

For this tutorial the following products have been used:

• Nucleo

• Lenovo Thinkpad T470 (Windows)

1.2. Main Table of Content 185

DDS-Demonstrators, Release TechPush

• Micro USB cable

• STM32CubeIDE

Start project based on “.ioc” file

Until now 2 projects have been made on the STM32CubeIDE to test some parts of the Nucleo. Now we will make a
final project, however this project is a little bit different from the others. This project will be based on C++, because
the main library needed for DDS is based on C++. More about this library can be read later on this page.

Because most of the stuff is already done earlier in this guide, we will skip the parts where we add most of the
libraries. This can be done by starting a project from a “.ioc” file. The .ioc file used for this guide can be found in
src/demonstrators/BareMetalEmbedded/embedded_rtps_stm32.ioc. Download this file to your
workspace and continue with the guide.

First, you will have to select that the project needs to be based on a “.ioc” file. Click on File followed by New. In this
tab select STM32 Project from STM32CubeMX “.ioc” file.

On this pop-up select the downloaded “.ioc” file.

Select C++ as a targeted language and finish building the project.

186 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

Because you have started a project from another source, the next step will be about doing a check if everything is set
as it should be.

Check Libraries

If you made a project from the “.ioc” file, you shouldn’t need to do this. But to prevent any mistakes you could check
if every library is included

First, check if all the GPIO pins are set as expected. these pins include some LED’s, in- and output for USART and
Ethernet pins.

1.2. Main Table of Content 187

DDS-Demonstrators, Release TechPush

For the Ethernet port, it is also important to have the global interrupt enabled. This interrupt is used for the TCP/IP
communication via the Ethernet port.

188 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

The LWIP is the library used for the TCP/IP communication. For this guide, the DHCP option is disabled and the IP
settings are hardcoded. This will make the guide easier and focus more on DDS instead of the TCP/IP communication.

1.2. Main Table of Content 189

DDS-Demonstrators, Release TechPush

Last but not least you will need to check if FreeRTOS is enabled. The only importance is that FreeRTOS is enabled
and there is no need for more tasks. The default task is enough to show the working of DDS.

190 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

If your project is matching the settings in the images above, you can continue with the next step.

Ported DDS

Several university students have ported the DDS library on to multiple devices, including the Nucleo. This ported
library will be used for this project. To obtain the library, you will need to make use of the program Command Prompt.

The library can be found online on GitHub. Because it is available on GitHub we can make use of the “git clone”
command in Command Prompt to get a copy of the library on your computer. The library will then be placed in the
folder of our project.

The first step is to make sure your directory is set to the folder of the project DDS. This is needed to provide easier
access to the library within the software.

When you have successfully changed your directory, enter the following command to get the ported DDS library by
making use of git.:

1.2. Main Table of Content 191

https://github.com/embedded-software-laboratory/embeddedRTPS/tree/master/include/rtps

DDS-Demonstrators, Release TechPush

git clone https://github.com/embedded-software-laboratory/embeddedRTPS.git rtps

This is how Command Prompt should look like when finished:

This is how your folder in your project should look like when finished:

If you don’t want/have git on your computer, click on the link to the Github page and make sure to download the DDS
library to the right directory in your workspace.

This folder will now be in your workspace, but the IDE won’t recognize it as a library. For the IDE to recognize this
library, you would need to open the properties of the project.

192 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

In the “Paths and Symbols” category you will need to add the include folders and source folders of the library. To add
this include to all the compilers, select all the options. This will add them to all compilers instantly.

After including all the “include“ folders of the library, it should look like the following image.

1.2. Main Table of Content 193

DDS-Demonstrators, Release TechPush

In the Source location sub-category, make sure to add the “src“ folders from the library. This should show the
following settings:

194 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

The last thing that needs to be changed is a filename of a specific configuration file. As you could read from the
GitHub page linked earlier. This libary is ported to several devices, thus including multiple config files. To make sure
you make use of the correct one, you will need to change the “config_stm.h” to “config.h”. This “config_stm.h” can
be found in embedded_rtps_stm32\rtps\include\rtps.

At this point, you have added all the needed libraries and set all the correct settings to make use of the ported DDS
library. In “DDS Coding”, the focus will be on the code of using the library and see the results of the code.

1.2. Main Table of Content 195

DDS-Demonstrators, Release TechPush

DDS Coding

authors Furkan Ali Yurdakul

date June 2020

Description

There are a few changes before you can execute this test code. The first change is the laptop to a personal computer.
The laptop of Sogeti can cause issues with their firewall and other securities for external communication. Secondly,
you will be using an Ubuntu Windows Subsystem for Linux(WSL), because the project to test the DDS communication
will be executed on the WSL.

This test code is only to show the working of DDS making use of the libraries shown in “Libraries for DDS on
bare-metal”. For the extras such as USART communication or making use of the on-board button/LED will not be
added.

For this tutorial the following products have been used:

• Nucleo

• A PC running on default Windows 10 (without extra security measures)

• Ubuntu(WSL)

• Micro USB cable

• Ethernet cable CAT.5e (2x)

• STM32CubeIDE

Software design

Before you start using the ported library, study the High-Level Design below to see what is expected. The reason for
this design is because of the WSL project that sends and reads from a specific topic. The software for the Nucleo will
be built for this project.

196 Chapter 1. Measure & Blog

https://ubuntu.com/wsl

DDS-Demonstrators, Release TechPush

How to get and install the software on your WSL is explained in WSL project. First, start the project on WSL until
it waits for a reader match. As you know the basics of DDS, a participant is created within the domain. For this
participant, 2 callbacks are created to be able to notice a match on the writer and the reader.

You will need a writer to send messages to the topic “TOLINUX” and a reader to receive a message from the topic
“TOSTM”. Upon making a reader for this specific topic, it should match with WSL which responses with a message.
This message is recognized because of a callback that is created after creating the reader.

Function “message_callback” is called and makes the Nucleo send 10 messages containing “10” to the topic
“TOLINUX”. After this, there is nothing written, which makes the test repeat itself until it crashes(see Known is-
sues). The software for Nucleo will be explained a bit more thoroughly in the Main Code.

Hardware design

For this test the hardware is set as the following:

1.2. Main Table of Content 197

DDS-Demonstrators, Release TechPush

You can connect the Nucleo directly to the computer. To make it future proof the setup has a network switch in
between the Nucleo and the PC. This way, you could add more Nucleo boards to see how it would perform in different
circumstances. The micro USB cable is only needed to flash software on the Nucleo. For this guide, it is also used for
debugging the software.

Main Code

The “main.cpp” file can be found in “/src/demonstrators/BareMetalEmbedded/embedded_rtps_stm32/Core/Src/main.cpp”.
The main part that needs focus is the Software design. stated before. “StartDefaultTask” is the default task of FreeR-
TOS, where you call the function “startRTPStest();”.

void StartDefaultTask(void const * argument)
{

/* init code for LWIP */
MX_LWIP_Init();

/* USER CODE BEGIN 5 */
startRTPStest();

(continues on next page)

198 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

(continued from previous page)

volatile auto size = uxTaskGetStackHighWaterMark(nullptr);

while(1);
/* USER CODE END 5 */
}

As seen in the Software design, this is where the participant, callbacks, writer, and reader are created. The initialization
of DDS happens in the function “startRTPStest();”.

//Function to start the RTPS Test
void startRTPStest(){

//Initialize variables and complete RTPS initialization
bool subMatched = false;
bool pubMatched = false;
bool received_message = false;

static rtps::Domain domain;

//Create RTPS participant
rtps::Participant* part = domain.createParticipant();
if(part == nullptr){

return;
}

//Register callback to ensure that a publisher is matched to the writer before
→˓sending messages

part->registerOnNewPublisherMatchedCallback(setTrue, &pubMatched);
part->registerOnNewSubscriberMatchedCallback(setTrue, &subMatched);

//Create new writer to send messages
rtps::Writer* writer = domain.createWriter(*part, "TOLINUX","TEST", false);
rtps::Reader* reader = domain.createReader(*part, "TOSTM", "TEST", false);
reader->registerCallback(&message_callback, writer);

domain.completeInit();

//Check that writer creation was successful
if(writer == nullptr || reader == nullptr){

return;
}

//Wait for the subscriber on the Linux side to match
while(!subMatched || !pubMatched){

}

while(true){}
}

The function “message_callback” starts upon receiving something from WSL. This function creates a string array
length of 10. This string array contains 10 times the string “10”, which is then sent as a message through DDS to
WSL.

void message_callback(void* callee, const rtps::ReaderCacheChange& cacheChange){
rtps::Writer* writer = (rtps::Writer*) callee;

(continues on next page)

1.2. Main Table of Content 199

DDS-Demonstrators, Release TechPush

(continued from previous page)

static std::array<uint8_t,10> data{};
data.fill(10);
auto* change = writer->newChange(rtps::ChangeKind_t::ALIVE, data.data(), data.

→˓size());
}

These are the main parts of this project. The whole project can be found in src/demonstrators/
BareMetalEmbedded/embedded_rtps_stm32/. In the next part, the setup of the project for the WSL will
be explained.

WSL project

If you have a Ubuntu(WSL) set and ready you can go ahead and install the following dependencies:

Note: Visit https://ubuntu.com/wsl if you don’t know how to install Ubuntu on Windows Subsystem for Linux.

sudo apt-get -y update && apt-get -y upgrade
sudo apt-get install -y \

software-properties-common \
libboost-all-dev \
libssl-dev \
build-essential \
cmake \

After installing the dependencies, the project can be cloned using the following command:

git clone https://github.com/embedded-software-laboratory/embeddedRTPS-STM32

To compile the project navigate to the “linux” folder, then use the following commands:

cd embeddedRTPS-STM32 \
cd linux \
mkdir build \
cd build \
cmake -DTHIRDPARTY=ON .. \
make

Having everything into place, you should be able to make a connection between the Nucleo and your computer. The
next part will show you the results and how to get them.

Results

As seen in the Software design, the DDS project will first be started on WSL. This way it will wait for a reader to
match with the Nucleo.

200 Chapter 1. Measure & Blog

https://ubuntu.com/wsl

DDS-Demonstrators, Release TechPush

After starting DDS on the WSL, the Nucleo can be reset in order to establish a connection and sending messages back
and forth. In this guide, the Nucleo is started in debug mode to show the variables changing to true when they connect
successfully.

On your WSL it should look like the image below where you can see the messages “10” being received.

1.2. Main Table of Content 201

DDS-Demonstrators, Release TechPush

Congratulations! You have successfully implemented the communication protocol DDS on an embedded bare-metal
hardware device.

The next part is needed if you haven’t encountered the same result as the guide has.

Known issues

There are a few known issues discovered when testing the software. In the picture below we see the first 2 of them:

202 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

A segmentation fault, this is possible because of the software running the code infinitely and crashes at some point.

Connection issue, this could be because of the firewall your computer. It could also be possible because of the way the
hardware is connected.

These 2 issues are not a problem for showing the working of DDS. But the next issue can be a big deal because it gives
an error when compiling the code. The error says it’s a scoping issue, but it looks more like a compiler issue.

There has not been proper research done on these issues. These issues could be addressed in future projects. Visit the
GitHub page. which still gets updates, for the project which this guide is based on.

Todo:

• Research the cause of the connection issue

1.2. Main Table of Content 203

https://github.com/embedded-software-laboratory/embeddedRTPS-STM32

DDS-Demonstrators, Release TechPush

• Research the cause of the incompatibility with the ported library.

• A project to make multiple bare-metla devices communicate with each other for a round-trip

Links

• Datasheet of the Nucleo: https://www.st.com/resource/en/datasheet/stm32f767zi.pdf

• IDE used for the Nucleo: https://www.st.com/en/development-tools/stm32cubeide.html

• Manual of the IDE: https://www.st.com/resource/en/user_manual/dm00104712-stm32cubemx-for-stm32-configuration-and-initialization-c-code-generation-stmicroelectronics.
pdf

• Comparison standard and Real-Time operating system: https://www.microcontrollertips.com/
real-time-standard-how-to-choose-rtos/

• Webpage of FreeRTOS: https://www.freertos.org/

• Ported DDS: https://github.com/embedded-software-laboratory/embeddedRTPS/tree/
dc5e5106b136e91fad54dc969f3a4d68ea101566

• Source code for FreeRTOS: src/demonstrators/BareMetalEmbedded/FreeRTOS/

• Source code for DDS: src/demonstrators/BareMetalEmbedded/embedded_rtps_stm32/

Clean Install with internet

authors Joost Baars

date Mar 2020

This page describes how the general DDS necessities can be installed (Cyclone DDS library and the requirements for
the documentation). This tutorial was tested from a clean Raspbian Buster Lite installation (version 13-03-2020).

This tutorial is specifically for Linux systems based on Debian. Therefore, this tutorial also works for Ubuntu systems.

This tutorial also specifies what commands need root access. These commands use sudo in front of the actual
command that is executed.

Start with the following commands to make sure the repositories are up to date:

sudo apt-get update && sudo apt-get upgrade

Cyclone DDS install

For this library, you have to install the packages using this command:

sudo apt-get install cmake git openjdk-11-jdk-headless maven openssl

If you don’t have a C++ compiler, it can be installed with the following command:

sudo apt-get install gcc

Install Cyclone DDS:

204 Chapter 1. Measure & Blog

https://www.st.com/resource/en/datasheet/stm32f767zi.pdf
https://www.st.com/en/development-tools/stm32cubeide.html
https://www.st.com/resource/en/user_manual/dm00104712-stm32cubemx-for-stm32-configuration-and-initialization-c-code-generation-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/dm00104712-stm32cubemx-for-stm32-configuration-and-initialization-c-code-generation-stmicroelectronics.pdf
https://www.microcontrollertips.com/real-time-standard-how-to-choose-rtos/
https://www.microcontrollertips.com/real-time-standard-how-to-choose-rtos/
https://www.freertos.org/
https://github.com/embedded-software-laboratory/embeddedRTPS/tree/dc5e5106b136e91fad54dc969f3a4d68ea101566
https://github.com/embedded-software-laboratory/embeddedRTPS/tree/dc5e5106b136e91fad54dc969f3a4d68ea101566

DDS-Demonstrators, Release TechPush

git clone https://github.com/eclipse-cyclonedds/cyclonedds.git
cd cyclonedds
mkdir build
cd build
cmake ..
make
sudo make install

If nothing generated errors, you succesfully installed Cyclone DDS.

Note: Cyclone DDS version used in this tutorial

In general you can just use the newest version of Cyclone DDS. But if the newest version does not work for any reason,
this tutorial used the last commit: 269f18e.

This commit can be used by using the command:

git checkout 269f18e

Documentation

The documentation needs the following packages to be installed:

sudo apt-get install python3 plantuml python3-pip python3-sphinx
pip3 install sphinxcontrib.napoleon sphinxcontrib-plantuml sphinxcontrib.
→˓needs

Now the repository of the DDS-Demonstrators can be downloaded and the documentation can be build. For the de-
pendencies of individual software programs on this repository, and how to run it. You should check the documentation
page containing that application.

git clone https://bitbucket.org/HighTech-nl/dds-demonstrators.git
cd dds-demonstrators/docs
make

The documentation is stored in the __result directory. Now you should open __result/html/index.html
with your browser for the documentation.

If you use a windows linux subsystem (WSL), then you can use the following command for viewing the documentation
in your browser. Otherwise, you have to replace x-www-browser with the browser you have installed.

x-www-browser __result/html/index.html

Software Quality Control

authors Joost Baars

date Mar 2020

The C++ software within this project must be checked for issues and should be posted online when there are no issues
or warnings in the software.

The software can be checked using static code analyzers. For the C++ software, I’ve used the static code analyzer
called “cppcheck”.

1.2. Main Table of Content 205

DDS-Demonstrators, Release TechPush

The compiler can check a lot of issues too. Therefore, I turn on most of the compiler warnings.

Cppcheck

A static code analyzer for C++.

Install

Cppcheck can be installed using the following command:

sudo apt-get install cppcheck

Usage

The command below should be executed in the main directory of the C++ project. Ideally, the main directory contains
all the source code. If not, cppcheck can only partially scan the code. This command could also be executed in a
higher directory level containing all source code, then you should exclude all other files that are not the source code.

cppcheck --enable=all --inconclusive --std=posix -i build/ .

This scans all the files recursively from your main directory. The -i build/ command tells cppcheck not to check
the build folder (because these are not C/C++ files). The -i can be used for more directories. For each directory,
an additional -i <file/directory name> tag needs to be used. So for multiple directories that need to be
ignored, there are multiple -i tags.

The other commands: --enable=all --inconclusive --std=posix are enabling all possible warn-
ings/errors for the static code analyzer. These results can be ignored if you have a good reason for it. The results
are in general useful and enhance the quality of the code.

All commands of cppcheck can be found using only the command cppcheck in the terminal.

Compiler warnings

In C++ I enable the following compiler warnings:

-pedantic -Wall -Wcast-align -Wcast-qual -Wdisabled-optimization
-Winit-self -Wmissing-declarations -Wmissing-include-dirs -Wredundant-decls
-Wshadow -Wsign-conversion -Wundef -Werror
-Wempty-body -Wignored-qualifiers -Wmissing-field-initializers
-Wsign-compare -Wtype-limits -Wuninitialized

This list shows most of the warnings. In most cases, warnings mean bad code. Therefore, one of the warnings that is
enabled is -Werror. This warning makes errors from warnings. Therefore, you must solve the warning before the
code becomes compilable again.

CMake

In CMake, these warnings can be enabled by placing the following in the CMakeLists.txt file:

206 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

Add warnings
target_compile_options(<Project Name> PRIVATE -pedantic -Wall -Wcast-align -
→˓Wcast-qual -Wdisabled-optimization

-Winit-self -Wmissing-
→˓declarations -Wmissing-include-dirs -Wredundant-decls

-Wshadow -Wsign-conversion -
→˓Wundef -Werror

-Wempty-body -Wignored-
→˓qualifiers -Wmissing-field-initializers

-Wsign-compare -Wtype-limits -
→˓Wuninitialized)

<Project Name> should be the name of the project or the library.

Links

• Cppcheck official website: https://sourceforge.net/projects/cppcheck/

Requirements of performance measurements for DDS

This page contains the requirements for the performance measurements in DDS. It is separated into 2 chapters. One of
them contains the requirements of the client. The other chapter contains the specifications. The specifications describe
the requirements in a SMART way. These specifications are therefore testable to see if the requirement is met. The
specifications are, in this project, created by the developer and discussed with the client.

The table below shows all the requirements and specifications. Additionally, it shows the specifications that belong to
a requirement. This way, the specifications linked to a requirement can easily be found.

1.2. Main Table of Content 207

https://sourceforge.net/projects/cppcheck/
https://hr.wayne.edu/leads/phase1/smart-objectives

DDS-Demonstrators, Release TechPush

208 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

ID Type Title Incoming Outgoing
Doc_1 req readable docu-

mentation
DOC_DEV; DOC_INSTRUCTIONS;
DOC_SPH; DOC_QoS

Doc_2 req formal documen-
tation

DOC_UML; DOC_DDS

Doc_3 req team pages docu-
mentation

Perf_1 req performance of
DDS

PERF_LIB; PERF_CPU;
PERF_MEM; PERF_CONNECT;
PERF_DISCONNECT; PERF_QoS;
PERF_SCALABLE

Learn_1 req learning LEARN_WRAPPER
Com-
mer_1

req commercial
availability

COMMERCIAL_LICENSE

API_1 req API’s API_TEST; PERF_API
DOC_DEV spec further develop-

ment documen-
tation

Doc_1

DOC_INSTRUCTIONSspec documentation
instructions

Doc_1

DOC_SPH spec documentation
style

Doc_1

DOC_QoS spec documentation
of Quality of
Service policies

PERF_QoS Doc_1; PERF_CPU;
PERF_MEM;
PERF_CONNECT;
PERF_DISCONNECT

DOC_UML spec PlantUML usage Doc_2
DOC_DDS spec software doc-

umentation of
DDS

Doc_2

PERF_LIB spec software DDS li-
brary

Perf_1

PERF_CPUspec performance
CPU

DOC_QoS; PERF_QoS;
PERF_SCALABLE

Perf_1

PERF_MEMspec performance
memory

DOC_QoS; PERF_QoS;
PERF_SCALABLE

Perf_1

PERF_CONNECTspec performance of
connecting

DOC_QoS; PERF_QoS;
PERF_SCALABLE

Perf_1

PERF_DISCONNECTspec performance of
disconnecting

DOC_QoS; PERF_QoS;
PERF_SCALABLE

Perf_1

PERF_QoS spec performance
difference Qual-
ity of Service
policies

Perf_1; PERF_CPU;
PERF_MEM;
PERF_CONNECT;
PERF_DISCONNECT;
DOC_QoS

PERF_SCALABLEspec documentation
of Quality of
Service policies

Perf_1; PERF_CPU;
PERF_MEM;
PERF_CONNECT;
PERF_DISCONNECT

LEARN_WRAPPERspec software wrap-
per

Learn_1

COM-
MER-
CIAL_LICENSE

spec commercial
license

Commer_1

API_TEST spec different API’s PERF_API API_1
PERF_API spec performance dif-

ferent API’s
API_1; API_TEST

1.2. Main Table of Content 209

DDS-Demonstrators, Release TechPush

Requirements

The requirements are given by the client and are not SMART defined.

Documentation

The graph below shows the linkage between the requirements and the corresponding specifications. These require-
ments are all related to the documentation.

The requirement of the team pages does not contain any SMART defined specifications. The team pages can be used
for documenting things quickly and less precise. There are no additional specifications bound to this requirement.

Requirement: readable documentation Doc_1

tags: documentation

links incoming: DOC_DEV , DOC_INSTRUCTIONS, DOC_SPH, DOC_QoS

The documentation must be readable for developers who want to learn more about DDS.

Requirement: formal documentation Doc_2

tags: documentation

links incoming: DOC_UML, DOC_DDS

The formal documentation is the documentation for the delivered artefacts and should be clear and concise.

210 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

Requirement: team pages documentation Doc_3

tags: documentation

The team pages may have less concise language, there are no additional requirements for the team page documen-
tation other than the General requirements.

Software

The graph below shows the link between the requirements and the corresponding specifications. These requirements
are all related to the software that shall be developed during the project.

Requirement: performance of DDS Perf_1

tags: software

links incoming: PERF_LIB, PERF_CPU, PERF_MEM, PERF_CONNECT , PERF_DISCONNECT , PERF_QoS,
PERF_SCALABLE

The performance of DDS shall be measured with various configurations.

1.2. Main Table of Content 211

DDS-Demonstrators, Release TechPush

Requirement: learning Learn_1

tags: software

links incoming: LEARN_WRAPPER

The delivered artefacts are made for learning/explaining DDS.

Requirement: commercial availability Commer_1

tags: software

links incoming: COMMERCIAL_LICENSE

The delivered software can be used in commercial products.

Requirement: API’s API_1

tags: software

links incoming: API_TEST , PERF_API

The effect of different API’s for DDS must be compared with each other, if possible.

Specifications

The specifications are defined with the client. These are derived from the main requirements.

Documentation

The specifications for the documentation are listed below.

212 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

Specification: further development documentation DOC_DEV

tags: documentation
requirement: MUST

links outgoing: Doc_1

Every artefact shall be documented in such extent that a developer knows how DDS is used within the artefact.

Note: This specification can be checked by giving 2 developers the project including the documentation. They
should be able to explain how DDS is used within the project.

Specification: documentation instructions DOC_INSTRUCTIONS

tags: documentation
requirement: MUST

links outgoing: Doc_1

Every artefact contains execution instructions that can be followed by developers.

Note: This requirement can be checked by giving 2 developers the project including the documentation. They
should be able to successfully execute the instructions.

Specification: documentation style DOC_SPH

tags: documentation
requirement: MUST

links outgoing: Doc_1

The documentation shall be written in ReStructured Text for Sphinx.

1.2. Main Table of Content 213

DDS-Demonstrators, Release TechPush

Specification: documentation of Quality of Service policies DOC_QoS

tags: documentation
requirement: MUST

links outgoing: Doc_1, PERF_CPU, PERF_MEM, PERF_CONNECT , PERF_DISCONNECT
links incoming: PERF_QoS

The performance differences between Quality of Service policies are documented.

Note: There must be results of performance measurements that show what Quality of Service poli-
cies are faster or slower based on the performance measurements (performance CPU (PERF_CPU), perfor-
mance memory (PERF_MEM), performance of connecting (PERF_CONNECT), performance of disconnecting
(PERF_DISCONNECT)). At least 2 different Quality of Service policies must be compared with each other.

Specification: PlantUML usage DOC_UML

tags: documentation
requirement: MUST

links outgoing: Doc_2

All diagrams within the Sphinx documentation shall be written using PlantUML, if they are supported by the
PlantUML language.

Note: This also includes the extended functionalities of PlantUML like Ditaa and DOT.

214 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

Specification: software documentation of DDS DOC_DDS

tags: documentation
requirement: MUST

links outgoing: Doc_2

The use of DDS within the software shall be documented.

Note: The documentation of the software shall contain a technical explanation of how DDS is used within the
application.

Software

The specifications for the software are listed below.

Specification: software DDS library PERF_LIB

tags: software
requirement: MUST

links outgoing: Perf_1

The Cyclone DDS library shall be used as the DDS implementation.

Note: Only if something is not implemented in the CycloneDDS library, a different DDS implementation may be
used for the tests.

1.2. Main Table of Content 215

DDS-Demonstrators, Release TechPush

Specification: performance CPU PERF_CPU

tags: software
requirement: SHOULD

links outgoing: Perf_1
links incoming: DOC_QoS, PERF_QoS, PERF_SCALABLE

The CPU usage of different Quality of Service policies shall be measured.

Specification: performance memory PERF_MEM

tags: software
requirement: SHOULD

links outgoing: Perf_1
links incoming: DOC_QoS, PERF_QoS, PERF_SCALABLE

The memory usage of different Quality of Service policies shall be measured.

Specification: performance of connecting PERF_CONNECT

tags: software
requirement: MUST

links outgoing: Perf_1
links incoming: DOC_QoS, PERF_QoS, PERF_SCALABLE

The time between the DDS registration of a device and the notification of other devices shall be measured.

216 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

Specification: performance of disconnecting PERF_DISCONNECT

tags: software
requirement: MUST

links outgoing: Perf_1
links incoming: DOC_QoS, PERF_QoS, PERF_SCALABLE

The time between the DDS disconnection of a device and the notification of other devices shall be measured.

Specification: performance difference Quality of Service policies PERF_QoS

tags: software
requirement: MUST

links outgoing: Perf_1, PERF_CPU, PERF_MEM, PERF_CONNECT , PERF_DISCONNECT , DOC_QoS

The performance of Quality of Service policies within DDS shall be compared to each other.

Specification: documentation of Quality of Service policies PERF_SCALABLE

tags: software
requirement: SHOULD

links outgoing: Perf_1, PERF_CPU, PERF_MEM, PERF_CONNECT , PERF_DISCONNECT

The difference in performance, CPU/memory footprint, registration time, disconnection time, shall be recorded
with 2 devices in the network compared to at least 4 devices in the network.

Note: This requirement tests the scalability of DDS.

1.2. Main Table of Content 217

DDS-Demonstrators, Release TechPush

Specification: software wrapper LEARN_WRAPPER

tags: software
requirement: SHOULD

links outgoing: Learn_1

The functions of Cyclone DDS shall not be used within a wrapper.

Specification: commercial license COMMERCIAL_LICENSE

tags: software
requirement: MUST

links outgoing: Commer_1

The delivered software shall be in accordance with the MIT, BSD or Apache licenses, with an exception for the
DDS library.

Specification: different API’s API_TEST

tags: software
requirement: SHOULD

links outgoing: API_1
links incoming: PERF_API

The communication between 2 different APIs shall be tested (The C/C++ API and the Python API).

218 Chapter 1. Measure & Blog

DDS-Demonstrators, Release TechPush

Specification: performance different API’s PERF_API

tags: software
requirement: SHOULD

links outgoing: API_1, API_TEST

The difference in performance, speed of the implementation, shall be measured between different APIs (if this is
possible, see requirement different API’s (API_TEST)).

1.2.6 Things to do:

DDS-Demonstrators

Many Demonstrators can/do exist in several variants. And/or measurements between the variants are useful. Typically
there is a backlog of Demonstrators and Requirements (on e.g. variants)

• See the Demonstrators, for some ideas

• And the ‘incoming’ liks there for variants or requirements

TodoList

There are also a lot of things on the todolist; collected from the docs

Todo: SetUp the M&B comparison between DDS and other protocols in this environment

Tip: Is this part of “DDS-Demonstrators”, or another HighTech-NL TechPush project?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/dds-
demonstrators/checkouts/latest/docs/doc/Backlog/1.RoundTrip+Flood/hints.rst, line 10.)

Todo: Fix MQTT, DDS, ZMQ Matrix board application in C++.

The matrix board application sends out messages each 24 milliseconds, and is also receiving messages from two other
boards at this pace. Each time a message is sent or received, the message and a timestamp are written to a file. This
is done by creating a thread so that the main applications performance will be affected minimally by writing these
messages. The application may crash after a while due to the high number of threads created to write measurements.
An error will occur because no further threads can be started at that point. If you think you can go ahead i wish you
the best of luck!

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/dds-
demonstrators/checkouts/latest/docs/doc/Demonstrators/ComparedToOtherProtocols/MatrixBoard/rt_matrix_board_C++.rst,
line 63.)

1.2. Main Table of Content 219

DDS-Demonstrators, Release TechPush

Todo: Install CycloneDDS on a Windows machine.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/dds-
demonstrators/checkouts/latest/docs/doc/Teams/1.Hurricane/setupCycloneDDS.rst, line 81.)

Todo:

• Research the cause of the connection issue

• Research the cause of the incompatibility with the ported library.

• A project to make multiple bare-metla devices communicate with each other for a round-trip

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/dds-
demonstrators/checkouts/latest/docs/doc/Teams/2.Demonstra-Tors/7.NucleoDDS/DDSCode.rst, line 311.)

Ask . . .

For all assignments, ask the PO (albert)

220 Chapter 1. Measure & Blog

	Measure & Blog
	Deliverables
	Main Table of Content

